
Designing a Workload Scenario for Benchmarking
Message-Oriented Middleware

Kai Sachs∗, Samuel Kounev∗†, Marc Carter‡, Alejandro Buchmann∗
∗Databases and Distributed Systems Group

TU Darmstadt, Germany
Email: {sachs,skounev,buchmann}@dvs1.informatik.tu-darmstadt.de

† Computer Laboratory
University of Cambridge, UK

Email: Samuel.Kounev@cl.cam.ac.uk
‡ IBM Hursley Labs

Hursley Park, Winchester, UK
Email: mcarter@uk.ibm.com

Abstract— Message-oriented middleware (MOM) is increas-
ingly adopted as an enabling technology for modern information-
driven applications like event-driven supply chain management,
transport information monitoring, stock trading and online
auctions to name just a few. There is a strong interest in the
commercial and research domains for a standardized benchmark
suite for evaluating the performance and scalability of MOM.
With all major vendors adopting JMS (Java Message Service) as
a standard interface to MOM servers, there is at last a means
for creating a standardized workload for evaluating products
in this space. This paper describes a novel application in the
supply chain management domain that has been specifically
designed as a representative workload scenario for evaluating the
performance and scalability of MOM products. This scenario is
used as a basis in SPEC’s new SPECjms benchmark which will
be the world’s first industry-standard benchmark for MOM.

I. INTRODUCTION

Message-oriented middleware (MOM) is at the core of a
vast number of financial services and enterprise applications,
and is gaining increasing traction in other areas, such as
manufacturing, transportation, computer gaming, health-care
and supply chain management, as well as in technology
domains, such as Enterprise Service Bus (ESB), Enterprise
Application Integration (EAI) and Service Oriented Archi-
tectures (SOA) [5]. Novel messaging applications pose some
serious performance and scalability challenges. For example,
the next generation of event-driven supply chain management
based on RFID technology [7] (for instance SAP’s AutoID
infrastructure [3]) will be highly reliant on scalable and
efficient backend systems to support the processing of acquired
real-time data and its integration with enterprise applications
and business processes [13]. Large retailers, like Wal-Mart,
Metro or Tesco, are expected to have throughput rates of
about 60 billion messages per annum [2]. The performance and
scalability of the underlying MOM platforms used to process
these messages will be of crucial importance for the successful
adoption of such applications in the industry.

In order to guarantee that applications meet their Quality of
Service (QoS) requirements, it is essential that the platforms

on which they are built are tested using benchmarks to measure
and validate their performance and scalability. Benchmarks
not only help to compare alternative platforms and validate
them, but can also be exploited to study the effect of different
platform configuration parameters on the overall system per-
formance. However, if a benchmark is to be useful and reliable,
it must fulfill the following fundamental requirements [10]:

• It must be based on a workload representative of real-
world applications.

• It must exercise all critical services provided by plat-
forms.

• It must not be tuned/optimized for a specific product,
i.e. it must provide a level playing field for performance
comparisons.

• It must generate reproducible results.
• It must not have any inherent scalability limitations.

While a number of proprietary benchmarks for MOM
servers (for example [16], [8], [1], [9]) have been developed
and used in the industry for performance testing and product
comparisons (see [15], [14], [6], [12], [4]), these benchmarks
do not meet the above requirements. The reason is that most of
them use artificial workloads that do not reflect any real-world
application scenario. Furthermore, they typically concentrate
on stressing individual MOM features in isolation and do
not provide a comprehensive and representative workload for
evaluating the overall MOM server performance. Currently, no
industry-standard benchmark exists for evaluating the perfor-
mance and scalability of MOM platforms.

In this paper, we describe a novel application in the supply
chain management (SCM) domain that has been designed to
serve as a representative workload scenario for evaluating the
performance and scalability of MOM products. The appli-
cation models a set of supply chain interactions between a
supermarket company, its stores, its distribution centers and its
suppliers. These interactions are used as a basis in SPEC’s new
SPECjms benchmark which will be the world’s first industry-
standard benchmark for MOM products that offer a JMS (Java



Message Service [17]) interface. SPECjms is developed at
SPEC’s OSG-Java Subcommittee with the participation of
IBM, TU Darmstadt , Sun, Sybase, BEA, Apache, Oracle and
JBoss.

The rest of the paper is organized as follows. We start
by looking at the requirements and goals of the SPECjms
benchmark. We then present the supermarket supply chain
scenario used as basis in SPECjms. We discuss in detail
the roles, use cases and interactions defined in the scenario
and the way they can be used to stress and evaluate the
different aspects of JMS performance. Finally, we look at some
implementation issues and challenges that had to be addressed.

II. WORKLOAD REQUIREMENTS AND GOALS OF THE
SPECJMS BENCHMARK

The major goal of the SPECjms benchmark is to provide
a standard workload and metrics for measuring and evalu-
ating the performance and scalability of JMS-based MOM
platforms. In addition, the benchmark should provide a flexible
framework for JMS performance analysis. To achieve this goal,
the SPECjms workload must be designed to meet a number of
important requirements that can be grouped in the following
five categories:

1) Representativeness
2) Comprehensiveness
3) Focus
4) Configurability
5) Scalability
We now briefly discuss each of these groups of requirements

in turn.
a) Representativeness: No matter how well a benchmark

is designed, it would be of little value if the workload it
is based on does not reflect the way platform services are
exercised in real-life systems. Therefore, the most important
requirement for the SPECjms benchmark is that it is based on
a representative workload scenario. The communication style
and the types of messages sent and received by the different
parties in the scenario should represent a typical transaction
mix. The goal is to allow users to relate the observed behavior
to their own applications and environments.

b) Comprehensiveness: The second important require-
ment is that the workload is comprehensive in that it should
exercise all platform features typically used in the major
classes of JMS applications. Both the point-to-point and
publish/subscribe messaging domains should be covered. The
features and services stressed should be weighted according
to their usage in real-life systems. There is no need to cover
features of MOM platforms that are used very rarely in
practice.

The following dimensions have to be considered when
defining the workload transaction mix:

• Transactional vs. non-transactional messages.
• Persistent vs. non-persistent messages.
• Usage of different message types, e.g. TextMessages,

ObjectMessages, StreamMessages or MapMessages.

• Usage of messages of different sizes (small, medium,
large).

• Publish/subscribe vs. point-to-point messages (queues vs.
topics).

• One-to-one vs. one-to-many vs. many-to-many interac-
tions.

• Durable vs. non-durable subscriptions.
• Ratio of message producers over message consumers.

c) Focus: The workload should be focused on measuring
the performance and scalability of the JMS server’s software
and hardware components. It should minimize the impact of
other components and services that are typically used in the
chosen application scenario. For example, if a database would
be used to store business data and manage the application state,
it could easily become the limiting factor of the benchmark,
as experience with previous benchmarks shows [11]. This is
especially true in the case of SPECjms, since JMS servers, in
their role as mediators in interactions, are typically less loaded
than database or application servers. Another potential concern
is the client side of the benchmark where messages are sent
and received. The impact of client-side operations, such as
XML parsing, on the overall performance of the benchmark
should be minimized.

d) Configurability: As mentioned earlier, in addition to
providing standard workload and metrics for JMS perfor-
mance, SPECjms aims to provide a flexible performance anal-
ysis framework which allows users to configure and customize
the workload according to their requirements. Producing and
publishing standard results for marketing purposes will be just
one usage scenario for SPECjms. Many users will be interested
in using the benchmark to tune and optimize their platforms or
to analyze the performance of certain specific MOM features.
Others could use the benchmark for research purposes in
academic environments where, for example, one might be
interested in evaluating the performance and scalability of
novel methods and techniques for building high-performance
MOM servers. All these usage scenarios require that the
benchmark framework allows the user to precisely configure
the workload and transaction mix to be generated. Providing
this configurability is a great challenge because it requires that
interactions are designed and implemented in such a way that
one could run them in different combinations depending on
the desired transaction mix. The ability to switch interactions
off implies that interactions should be decoupled from one
another. On the other hand, it should be ensured that the
benchmark, when run in its standard mode, behaves as if the
interactions were interrelated according to their dependencies
in the real-life application scenario.

e) Scalability: The SPECjms application scenario must
provide a way to scale the workload along the following two
dimensions:

1) Horizontal scaling
2) Vertical scaling

In the horizontal scaling, the workload is scaled by in-
creasing the number of destinations (queues and topics) while



keeping the traffic per destination constant. In the vertical
scaling, the traffic (in terms of message count) pushed through
a destination is increased while keeping the number of des-
tinations fixed. Both types of scaling should be supported in
a manner that preserves the relation to the real-life business
scenario modeled. In addition, the user should be offered the
possibility to scale the workload in an arbitrary manner by
defining his own set of scaling points.

III. APPLICATION SCENARIO FOR SPECJMS:
SUPERMARKET SUPPLY CHAIN

The application scenario chosen for SPECjms models the
supply chain of a supermarket company. The participants
involved are the supermarket company, its stores, its distri-
bution centers and its suppliers. The scenario was defined
based on the requirements discussed in the previous section.
It offers an excellent basis for defining interactions that stress
different subsets of the functionality offered by JMS servers,
e.g. different message types as well as both point-to-point and
publish/subscribe communication. The scenario also offers a
natural way to scale the workload, e.g. by scaling the number
of supermarkets (horizontal) or by scaling the amount of
products sold per supermarket (vertical).

Company HQ

Super-
markets

Suppliers Supermarket Company

Distribution
Centers

= goods and 
information flow

= only information 
flow

Fig. 1. Overview of the Modeled Scenario and its Roles

The following four roles of participants involved in the
scenario are defined:

1) Company Headquarters
2) Distribution Centers
3) Supermarkets
4) Suppliers

The first three roles are owned by the supermarket com-
pany and therefore all communication among them is intra-
company. The suppliers are external companies and therefore
their communication with the roles of the supermarket com-
pany is inter-company. The interactions among the different
roles are illustrated in Figure 1.

A. Company Headquarters (HQ)

The company’s corporate headquarters are responsible for
managing the accounting of the company, managing informa-
tion about the goods and products offered in the supermarket
stores, managing selling prices and monitoring the flow of
goods and money in the supply chain.

B. Distribution Centers (DCs)

The distribution centers supply the supermarket stores which
sell goods to end customers. Every distribution center is
responsible for a set of stores in a given area. The distribution
centers in turn are supplied by external suppliers.

The distribution centers are involved in the following activ-
ities:

• Taking orders from supermarkets.
• Ordering goods from suppliers.
• Delivering goods to supermarkets.
• Providing statistical data to HQ (e.g. for data mining).

C. Supermarkets (SMs)

The supermarkets sell goods to end customers. The scenario
focuses on the management of the inventory of a supermarket
including its warehouse (back room). Not every supermarket
offers the same products. Some supermarkets could be smaller
than others, so that they do not have enough room for all
products, others may be specialized for some product groups
like food. We assume that every supermarket is supplied by
exactly one of the distribution centers.

D. Suppliers (SPs)

The suppliers deliver goods to distribution centers of the
supermarket company. Not every supplier offers the same
products. Instead, the suppliers have their own product cata-
logues. They deliver goods on demand, i.e. they must receive
an order from the supermarket company to send a shipment.
To keep things simple, it is assumed that each SP offers either
all products of a given product family or none of them.

IV. MODELED INTERACTIONS

The following interactions are modeled in SPECjms:
1) Order / Shipment Handling between SM and its assigned

DC
2) (Purchase) Order / Shipment Handling between a DC

and the SPs
3) Price Updates
4) Inventory Management
5) Sales Statistics Collection
6) Product Announcements
7) Credit Card Hotlists
Inter-company communication, i.e. communication between

the suppliers and the supermarket company, is implemented
using TextMessages containing XML documents. For intra-
company communication (between supermarkets, distribution
centers and the company headquarters) the whole set of
possible message types supported by JMS is used.



Note: In the following, unless otherwise noted, all messages
exchanged are assumed to be persistent and transactional.

A. Order / Shipment Handling (SM & DC)

This use case describes order and shipment activities be-
tween SMs and DCs. It includes two major steps:

1) SM sends an order to DC
2) DC ships goods to SM
In the first step, a SM sends an order to its DC. After

receiving the order, the DC sends a confirmation, ships the
goods to the SM and notifies the HQ about the shipment. When
the shipment arrives at the SM, the local inventory is updated
and a confirmation is sent to the DC. The interaction uses only
point-to-point communication and is illustrated in Figure 2(a)).
A specification of the interaction flow follows:

Interaction 1 (Point-To-Point):
1) A SM sends an order to its DC.
2) The DC sends a confirmation to the SM and dispatches

shipment.
3) The DC sends a non-transactional, non-persistent mes-

sage to the HQ (transaction statistics).
4) The shipment arrives at the SM and confirmation is sent

to the DC.

B. (Purchase) Order / Shipment Handling (DC & SP)

This use case describes purchase order and shipment activ-
ities between DCs and SPs. It includes four major steps:

1) DC sends a call for offers.
2) SPs send offers to DC.
3) DC selects one offer and sends a purchase order to SP.
4) SP ships goods to DC.
When goods in a DC are depleted, the DC has to place an

order to a SP to refill stock. First, a SP has to be selected.
The DC sends a call for offers to all SPs that are supplying
the required products. The SPs send offers to the DC, the
DC selects one of them and places a purchase order based
on the offer. The selected SP receives the order, delivers the
goods to the DC and sends an invoice to the company HQ.
After receiving the shipment, the DC acknowledges receipt
and reports it to the HQ. The interaction uses both point-to-
point and publish/subscribe communication and is illustrated
in Figure 2(b). A specification of the interaction flow follows:

Interaction 2 (Publish/Subscribe & Point-To-Point):
1) DC sends a call for offers.
2) All SPs offering the requested products (of the respective

product family) send an offer.
3) Based on the offers, the DC selects a SP and sends a

purchase order to it.
4) The SP sends an order confirmation to the DC and an

invoice to the HQ.
5) The SP dispatches a shipment to the DC.

Company HQ

Super-
markets

Suppliers Supermarket Company

Distribution
Centers

= goods and 
information flow

= only information 
flow

1

2
4

3

(a) Interaction 1 - Communication between SM and DC

Company HQ

Super-
markets

Suppliers Supermarket Company

Distribution
Centers

= goods and 
information flow

= only information 
flow

1

2
4

2

3

1

6

4

5

(b) Interaction 2 - Communication between SP and DC

Fig. 2. Interactions 1 and 2

6) The shipment arrives at the DC and confirmation is sent
to the SP.

7) The DC sends a non-transactional, non-persistent mes-
sage to the HQ (transaction statistics).

C. Price Updates

Selling prices are changed by the company administration
from time to time. To communicate this, the company HQ
sends messages with pricing information to the supermarkets.
The communication here is one-to-many and is based on
publish/subscribe messaging.

Interaction 3 (Publish/Subscribe):

1) HQ sends a price update to SMs.
2) Affected SMs update their information systems.

D. Inventory Management

When goods leave the warehouse of a supermarket (to refill
a shelf), the warehouse application must be informed, so that



the inventory can be updated.1

Interaction 4 (Point-To-Point):
1) As goods leave a SM’s warehouse, they get registered

by RFID-readers.
2) RFID-readers send observations to the local warehouse

application.
3) The local warehouse inventory is updated.

E. Sales Statistics Collection

SMs send sales statistics to the HQ (type and amount of
goods purchased by customers visiting the store). HQ can use
this data as a basis for data mining in order to study customer
behavior and provide useful information to marketing. For
example, based on such information, special offers or product
discounts could be made.

Interaction 5 (Point-To-Point):
1) SM sends a non-transactional, non-persistent message to

HQ containing sales statistics.
2) HQ update their data warehouse (OLAP).

F. New Product Announcements

New products are announced by the company administration
from time to time. To communicate this, the company HQ
sends messages with product information to the supermar-
kets offering the respective range of products (e.g. food,
computers, mp3-players). This communication is based on
publish/subscribe messaging.

Interaction 6 (Publish/Subscribe):
1) HQ sends a new product announcement to SMs.
2) Subscribed SMs update their information systems.

G. Credit Card Hot Lists

HQ sends credit card hot lists to SMs (complete list
once every hour and incremental updates as required). This
interaction is used to exercise non-durable, non-persistent
publish/subscribe messaging.

Interaction 7 (Publish/Subscribe):
1) HQ sends a credit card hot list to SMs.
2) Subscribed SMs receive the list and store it locally.

V. IMPLEMENTATION DETAILS

In this section, we discuss the way the workload scenario
we presented in the previous sections has been implemented
as part of the SPECjms benchmark.

A. Message Types and Destinations

There are several possibilities as to how many queues are
used in the implementation of interactions that use point-to-
point messaging:

1Note: Because the incoming goods are part of another interaction (as
described in Section IV-A), they are not considered here.

Intr. Destination Name Message
1 DC OrderQ order
1 DC ShipDepQ shipDep
1 DC ShipConfQ shipConf
2 DC IncomingOffersQ offers
2 DC POrderConfQ pOrderConf
2 DC PShipArrQ pShipInfo
1 SM ShipArrQ shipInfo
1 SM OrderConfQ orderConf
4 SM InvMovementQ inventoryInfo
2 SP POrderQ pOrder
2 SP PShipConfQ pShipConf
1 HQ OrderDCStatsQ statInfoOrderDC
2 HQ ProductFamilynT callForOffers
2 HQ ShipDCStatsQ statInfoShipDC
2 HQ InvoiceQ invoice
3 HQ PriceUpdateT priceUpdate
5 HQ SMStatsQ statInfoSM
6 HQ ProductAnnouncementT productAnnouncement
7 HQ CreditCardHLT creditCardHL

TABLE I
QUEUES AND TOPICS USED IN THE INTERACTIONS

1) One queue per message type and physical location (e.g.
one queue per SM for registering incoming goods from
the DC, and a separate queue for order confirmations
from the DC).

2) One queue per physical location (one queue per SM, one
queue per DC, one queue per SP and one queue for the
HQ).

3) One queue per physical location and communicating
party (e.g. one queue per DC for communication with
SPs, and one for communication with SMs).

In SPECjms the first option was chosen. Table I shows the
destinations (queues and topics) used in the implementation
of the interactions. Destination names are prefixed with the
location type they belong to (SP, SM, HQ or DC) and suffixed
with ‘T’ or ‘Q’ depending on the destination type (Topic or
Queue)2.

The different types of messages used are detailed in Ta-
ble II. All message types supported by the JMS specifica-
tion with exception of ByteMessages (which are rarely used
in practice) are exercised by the workload. It was decided
to use AUTO ACKNOWLEDGMENT as default acknowl-
edgment mode for non-transactional sessions. The reason
is that most real-world applications do not use the other
acknowledgment modes (CLIENT ACKNOWLEDGMENT or
DUPS OK ACKNOWLEDGMENT). However, SPECjms still
offers the possibility to change the acknowledgment mode for
selected interactions, although this is not allowed for published
benchmark results.

B. Event Handlers

An Event Handler (EH) is a Java class that contains the ap-
plication logic executed to process messages sent to a queue or
a topic. Event handlers register as listeners for the queue/topic

2Since the Headquarters are responsible for managing the different topics,
all topic names are prefixed with HQ.



Intr. Message Destination Type Size Properties Description
1 order Queue ObjectMessage small to medium Persistent,

Transacted
Incoming orders from SMs including or-
dered products and other order information.

1 orderConf Queue ObjectMessage small to medium Persistent,
Transacted

Confirmation sent by DC to SM confirming
receipt of an order.

1 shipInfo Queue TextMessage small to large Persistent,
Transacted

EPCs representing items in a shipment (reg-
istered by RFID readers as shipment leaves
DC / enters SM).

1 shipDep Queue TextMessage small to large Persistent,
Transacted

EPCs representing items in a shipment (reg-
istered by RFID readers as shipment leaves
DC / enters SM).

1 shipConf Queue ObjectMessage small to medium Persistent,
Transacted

Confirmation sent to DC to confirm ship-
ment arrival at SM.

2 callForOffers Topic TextMessage small to medium Persistent,
Transacted

Call for Offers send to all SP offering a
product family (XML document).

2 offer Queue TextMessage small to medium Persistent,
Transacted

Offer created by SPs based on callForOffers
(XML document).

2 pOrder Queue TextMessage small to medium Persistent,
Transacted

Incoming purchase order based from DC on
an offer (XML document).

2 pOrderConf Queue TextMessage small to medium Persistent,
Transacted

Confirmation sent by SP to DC confirming
receipt of a purchase order (XML docu-
ment).

2 pShipInfo Queue TextMessage small to large Persistent,
Transacted

XML document describing an arriving ship-
ment from SP (registered by RFID readers
as they enter DC).

2 pShipConf Queue TextMessage small to medium Persistent,
Transacted

Confirmation sent to SP to confirm shipment
arrival at DC (XML document).

2 invoice Queue TextMessage small to medium Persistent,
Transacted

Purchase order invoice sent by SP (XML
document).

1 statInfoOrderDC Queue StreamMessage small Non-Persistent,
Non-Transacted

Statistical information sent to HQ contain-
ing information on the transactions and flow
of goods between SMs and DCs.

2 statInfoShipDC Queue StreamMessage small Non-Persistent,
Non-Transacted

Statistical information sent to HQ contain-
ing information on the transactions and flow
of goods between SPs and DCs.

3 priceUpdate Topic MapMessage small Persistent,
Transacted,
Durable

Price update sent to SM by HQ.

4 inventoryInfo Queue TextMessage small to large Persistent,
Transacted

EPCs representing observed item move-
ments in the inventory of a SM (registered
by RFID readers).

5 statInfoSM Queue ObjectMessage small to very
large

Non-Persistent,
Non-Transacted,
AutoAck

Statistical information sent to HQ contain-
ing sales statistics.

6 product-
Announcement

Topic StreamMessage small to large Non-Persistent,
Non-Transacted,
Non-Durable

Product announcements sent to SM by HQ.

7 creditCardHL Topic StreamMessage small to large Non-Persistent,
Non-Transacted,
Non-Durable

Credit card hotlist sent to SMs by HQ.

TABLE II
MESSAGE TYPES USED IN THE INTERACTIONS

and receive call backs from the messaging infrastructure (JMS
provider) as new messages arrive. A separate event handler is
defined for each queue and topic. For maximal performance,
multiple instances of an event handler could exist to enable
parallel processing.

The event handlers at the different physical locations are
part of the various applications emulated by the benchmark,
e.g. the four event handlers of a DC represent the DC-App used
in the diagrams in Figures 4(a) and 4(b). An event handler has
a similar name to its respective destination but is distinguished
by an ’EH’ suffix in place of ’Q’ or ’T’.

Example: DC OrderQ ⇒ DC OrderEH

C. Driver Framework

The SPECjms scenario includes many locations represented
by many event handlers. In order to drive the JMS server to
its capacity, event handlers may well be distributed across
many physical machines. The reusable control framework
designed for SPECjms aims to coordinate these distributed
activities without any inherent scalability limitations. Key
design decisions were that

• It should be written as far as possible in plain Java. Since
Java is the natural prerequisite of a JMS application this
reduces installation and configuration requirements on
end users.



• Further to the above, RMI is used as the basis for com-
munication as this is part of the standard J2SE platform.

• The controller need not be on the same machine as any
of the performance-critical workloads.

• Users should have maximum choice in how they wish to
lay out their workload to achieve optimum performance
(within the bounds of SPECjms run rules).

Fig. 3. Driver Framework

Figure 3 provides a simplified view of a typical test being
run on four nodes. In addition to the event handlers, it is made
up of several simple components.

1) Controller: The controller component reads in all of the
configuration and topological layout preferences given by the
user. This will include items such as the number of different
types of event handler and lists of the nodes across which they
may be run. With this knowledge, the controller instantiates
the topology. It begins this by connecting to a satellite process
on each node machine identified as part of this test to give it
specific instructions.

2) Satellite: The satellite is a simple part of the framework
(another Java application) which knows to build the correct
environment to start child Java processes for SPECjms. It takes
the controller’s configuration and will start the agent processes
relevant to that node. Although each agent is logically discrete
from its peers, the satellite will, based upon the initial config-
uration, combine many agents into a single JVM for reasons
of scalability.

3) Agents: Each logical agent represents one of the lo-
cations in the application scenario (Section III). This means
that, for example, a distribution center agent will contain a
set of DC event handlers pertaining to that location. Agents
connect back to the controller who co-ordinates the stages of
the test. Once all agents are connected, the event handlers
(implemented as a Java thread each) will start connecting to
the JMS server and the warm-up phase of messaging begins.

The controller manages the life cycle of the test by mon-
itoring progress, coordinating phase changes and collecting
statistics from the other components. When complete, it val-
idates and combines the statistics into summary output files
and presents the final metric for the test.

D. Minimizing the Impact of Non-MOM-Related Components

As discussed in Section II, the SPECjms workload should
be focused on measuring the performance and scalability of a
JMS server’s software and hardware components and minimize
the impact of other components that are not directly related
to the MOM services. Two concerns had to be addressed in
order to achieve this goal. The first one is how to avoid using a
database and the second one is how to minimize the message
processing overhead on the client. Given the fact that JMS
servers, in their role as mediators in interactions, are typically
less loaded than database servers or application servers, it
was a real challenge to place the focus of the workload
on the MOM-related components, without compromising the
workload representativeness.

As to the first concern, the problem is that without a
database it is hard to manage any application state and this
makes it difficult to emulate the interdependencies between
the interactions. The way we addressed this is by building a
detailed model of the business scenario, capturing the relative
rates of the different operations and the interdependencies
between the interactions. This made it possible to emulate
database access operations and configure the interactions in
such a way that they behave as if a real database were used.
Note that, while we are not using a database for managing
application state, it is perfectly legitimate to use a database as
part of the MOM infrastructure for persistent messaging.

As to the second concern, the major issue was how to
minimize the overhead of parsing XML messages on the client.
On the one hand, we wanted to use XML for inter-company
communication in order to keep things as realistic as possible,
on the other hand, using a full-blown XML parser to parse
messages would have introduced too much overhead on the
client for operations which are not directly related to the MOM
services. The solution was to implement an optimized routine
that exploits the knowledge of the exact structure of received
XML messages and extracts the needed data without having
to parse the whole XML documents.

E. Providing a Framework for Performance Analysis of JMS

Another important goal of SPECjms that we discussed in
Section II was to provide a flexible framework for performance
analysis of JMS servers that allows users to configure and
customize the workload according to their requirements. To
achieve this goal, the interactions were implemented in such
a way that one could run them in different combinations
depending on the desired transaction mix. SPECjms provides
three different topologies which correspond to three different
modes in which the benchmark can be run:

1) Horizontal
2) Vertical
3) Freeform
The horizontal topology allows the workload to be scaled

horizontally by increasing the number of physical locations
(SMs, DCs, SPs) while keeping the traffic per location con-
stant. In the vertical topology, a fixed set of physical locations



Interaction 2 3 6 7
No. of topics: n (one for each product family) One One One
No. of producers: m (one per DC) One (HQ) One (HQ) One (HQ)
No. of consumers: p (one per SP) n (one per SM) n (one per SM) n (one per SM)
Transacted Yes Yes No No
Persistent Yes Yes No No
Durable Yes Yes No No

TABLE III
OVERVIEW OF THE ATTRIBUTES OF PUBLISH/SUBSCRIBE COMMUNICATION IN THE INTERACTIONS

is used and the workload is scaled by increasing the rate at
which goods are sold at supermarkets. Finally, the freeform
topology allows the user to define his own topology and
transaction mix and scale the workload in an arbitrary manner
by choosing a set of scaling points. Note that while in
the horizontal and vertical topology scaling is supported in
a manner that preserves the relation to the modeled real-
life business scenario, this does not necessarily apply to the
freeform topology since the goal there is to give the user
maximum flexibility.

SPECjms provides the following configuration parameters
that can be set by the user:

• The number of physical locations (HQ, SM, DC, SP)
emulated.

• The number of agents representing a single physical
location.

• The driver nodes on which agents are run.
• The number of JVMs run on each node and the way

agents are distributed among them.
• The number of javax.jms.Connection objects shared

amongst event handler classes within a single agent.
• Whether connections are shared by multiple sessions in

an event handler.
• Number of event handlers in an agent of each type.
• Number of driver instances for each interaction.
• Rate at which interactions are invoked.
• Total number of invocations of each interaction (as an

alternative to specifying a rate).
• Message size distributions for each interaction.
• Connection factory used on each event handler or driver

object.
• Whether AUTO ACKNOWLEDGMENT should be used

as acknowledgment mode for non-transactional sessions.
• Frequency of verifying message integrity after transmis-

sion (CRC check).

While in the horizontal and vertical topologies there are
some restrictions as to which parameters can be changed by
the user, these restrictions are relaxed in the freeform topology.
This allows the user to precisely configure the workload and
transaction mix to be generated and the way it is distributed
among client processes. The user can selectively turn off
interactions or change the rate at which they are run to shape
the workload according to his requirements. At the same
time, when running the horizontal or vertical topology, the
benchmark behaves as if the interactions were interrelated

according to their dependencies in the real-life application
scenario.

F. Interaction Details

1) Interactions 1 & 2: Interactions 1 and 2 are depicted in
Figures 4(a) and 4(b), respectively.

2) Interaction 3: In Interaction 3, publish/subscribe mes-
saging is used. The HQ communicate with SMs using a topic.

3) Interaction 4: Like Interactions 1 and 2, this interaction
is point-to-point based. There is one queue per SM.

4) Interaction 5: This interaction is again point-to-point
based. SMs use the HQ StatsQ queue (see Interactions 1
and 2) to send sales statistics to HQ. Alternatively, we could
use a separate queue for these statistics. In any case, a non-
persistent queue should be used.

5) Interaction 6: In this interaction the HQ communicate
with SMs via publish/subscribe messaging.

6) Interaction 7: Credit card hot lists are sent to SMs
through publish/subscribe messaging.

VI. SUMMARY

We presented a novel application in the supply chain man-
agement domain that has been designed to serve as a represen-
tative workload scenario for evaluating the performance and
scalability of MOM products. The application models a set
of interactions in the supply chain of a supermarket company.
These interactions are used as a basis in SPEC’s new SPECjms
benchmark which will be the world’s first industry-standard
benchmark for MOM products. We started by looking at the
requirements and goals of the SPECjms benchmark. We then
discussed in detail the roles, use cases and interactions defined
in the scenario and the way they can be used to stress and
evaluate the different aspects of JMS performance. Finally,
we looked at some implementation issues and challenges that
had to be addressed.

SPECjms provides a level playing field for performance
comparisons of competitive MOM products. However, produc-
ing and publishing standard results for marketing purposes will
be just one usage scenario of the benchmark. Many users will
be interested in using the benchmark to fine tune and optimize
their platforms or to analyze the performance of certain
specific MOM features. Others could use the benchmark for
research purposes in academic environments where, for exam-
ple, one might be interested in evaluating the performance and
scalability of novel methods and techniques for building high-
performance MOM servers. SPECjms has been designed to



(a) Sequence diagram for Interaction 1

(b) Sequence diagram for Interaction 2

Fig. 4. Use Case 1 & 2

support all of these usage scenarios by providing a flexible
performance analysis framework which allows the user to
precisely configure the workload and transaction mix to be
generated. In this sense, SPECjms will not only provide an
industry-standard benchmark for MOM servers, but it will also
offer a full-blown performance analysis tool for JMS-based
MOM infrastructures.

VII. ACKNOWLEDGMENTS

This work was partially funded by the German Re-
search Foundation (Deutsche Forschungsgemeinschaft). The

authors would like to acknowledge the contributions of the
members of the SPECjms Working Group to the specifi-
cation and development of the SPECjms benchmark. Spe-
cial thanks to Tim Dunn from IBM, George Tharakan from
Sun Microsystems, Evan Ireland from Sybase, Tom Barnes
and Russell Raymundo from BEA, and Adrian Co from
Apache. We are also especially thankful to Lawrence Cullen,
Robert Berry, Alan Adamson and John Stecher from IBM,
Steve Realmuto from BEA and Ricardo Morin from Intel for
their continued support of the SPECjms project.



REFERENCES

[1] ActiveMQ. JMeter performance test. http://incubator.apache.org/
activemq/jmeter-performance-tests.html, 2006.

[2] K. Alexander, T. Gillian, K. Gramling, M. Kindy, D. Moogimane,
M. Schultz, and M. Woods. IBM Business Consulting Services - Focus
on the Supply Chain: Applying Auto-ID within the Distribution Center.
White paper IBM-AUTOID-BC-002, 2003.

[3] C. Bornhövd, T. Lin, S. Haller, and J. Schaper. Integrating Automatic
Data Acquisition with Business Processes - Experiences with SAP’s
Auto-ID Infrastructure. In 30th International Conference on Very Large
Databases (VLDB’04), Aug. 29 - Sep. 3, 2004, Toronto, Canada, 2004.

[4] M. Carter. JMS Performance with WebSphere MQ for Win-
dows V6.0. http://www-1.ibm.com/support/docview.wss?rs=171&
uid=swg24010028, 2005.

[5] D. Chappell. Enterprise Service Bus. O’Reilly, 2004. ISBN: 059600675.
[6] Crimson Consulting Group. High-Performance JMS Messaging - A

Benchmark Comparison of Sun Java System Message Queue and IBM
WebSphere MQ. http://www.sun.com/software/products/message queue/
wp JMSperformance.pdf, 2003.

[7] K. Finkenzeller. RFID Handbook : Fundamentals and Applications in
Contactless Smart Cards and Identification. John Wiley & Sons, 2nd
edition, may 2003.

[8] IBM Hursley. Performance Harness for Java Message Service.
http://www.alphaworks.ibm.com/tech/perfharness, 2005.

[9] JBoss. JBoss JMS New Performance Benchmark. http://wiki.jboss.org/
wiki/Wiki.jsp?page=JBossJMSNewPerformanceBenchmark, 2006.

[10] S. Kounev. Performance Engineering of Distributed Component-Based
Systems - Benchmarking, Modeling and Performance Prediction. Shaker
Verlag, Dec. 2005. ISBN: 3832247130.

[11] S. Kounev and A. Buchmann. Improving Data Access of J2EE Applica-
tions by Exploiting Asynchronous Processing and Caching Services. In
Proceedings of the 28th International Conference on Very Large Data
Bases - VLDB2002, Hong Kong, China, August 20-23, 2002.

[12] Krissoft Solutions. JMS Performance Comparison.
http://www.fiorano.com/comp-analysis/jms perf report.htm, 2006.

[13] K. Sachs. Evaluation of Performance Aspects of the SAP Auto-
ID Infrastructure. Master’s thesis, Department of Computer Science,
Darmstadt University of Technology, 2004.

[14] Sonic Software Corporation. JMS Performance Comparison: Son-
icMQ(R) vs TIBCO Enterprise(TM) for JMS. White Paper, Nov. 2003.
http://www.onwhitepapers.com/redirect.php?wid=4A0D2BDBBE892052
41534CCB0AA8ED56.

[15] Sonic Software Corporation. Benchmarking E-Business Messaging
Providers. White Paper, Jan. 2004. http://www.onwhitepapers.com/
redirect.php? wid=4A0ABD6CBE8920524153D95D6F02C48C.

[16] Sonic Software Corporation. SonicMQ Test Harness.
http://www.sonicsoftware.com/products/sonicmq/performance bench-
marking/index.ssp, 2005.

[17] Sun Microsystems Inc. Java Message Service (JMS) Specification
Version 1.1. http://java.sun.com/products/jms/docs.html, 2002.


