
A Performance Test Harness For
Publish/Subscribe Middleware

Kai Sachs
TU Darmstadt, Germany

sachs@dvs.tu-
darmstadt.de

Samuel Kounev
FZI Karlsruhe, Germany
skounev@acm.com

Stefan Appel, Alejandro
Buchmann

TU Darmstadt, Germany
lastname@dvs.tu-

darmstadt.de

ABSTRACT
Publish/subscribe is becoming increasingly popular as com-
munication paradigm for loosely-coupled message exchange.
It is used as a building block in major new software archi-
tectures and technology domains such as Enterprise Service
Bus, Enterprise Application Integration, Service-Oriented
Architecture and Event-Driven Architecture. The growing
adoption of these technologies leads to a strong need for
benchmarks and performance evaluation tools in this area.
In this demonstration, we present jms2009-PS, a benchmark
for publish/subscribe middleware based on the Java Message
Service standard interface.

1. INTRODUCTION
The publish/subscribe (pub/sub) [2] paradigm is nowadays
used in many applications which are mostly designed for
maximum scalability. Therefore, such applications pose some
serious performance and scalability challenges for the under-
lying pub/sub middleware. In order to solve these issues, we
see a strong need for performance tools and benchmarks tar-
geting pub/sub middleware. To the best of our knowledge,
currently no benchmarks or performance test harness ex-
ist specifically targeted at pub/sub systems. Some general
guidelines for designing a benchmark suite for (distributed)
pub/sub systems are presented in [1], however, no specific
implementation is provided. A possible starting point for
developing such a benchmark is the SPECjms2007 standard
workload.

SPECjms2007 is the first industry-standard benchmark spe-
cialized for Message Oriented Middleware (MOM) [6]. It
exercises messaging products using the JMS (Java Message
Service) standard interface [7] and was developed by the
Standard Performance Evaluation Corporation (SPEC) un-
der the leadership of TU Darmstadt. It offers a compre-
hensive, standardized workload based on the experience of
SPEC member organisations including IBM, Sun and Ora-
cle. One of the major benefits of SPECjms2007 is that it

not ’only’ provides a benchmark, but also a complex perfor-
mance test harness and a framework for performance analy-
sis. It allows to create custom workload scenarios and inter-
actions or to modify existing ones. Examples for such user-
defined scenarios can be found in [3] and [4]. SPECjms2007
has received a lot of attention by both industry and academia
and is used for software quality assurance by major MOM
vendors. The goal of SPECjms2007, however, was not to de-
velop a pub/sub test harness but rather to provide a general
MOM benchmark. As such, the benchmark makes extensive
use of the Point-to-Point (PtP) communication via queues
which dominates the overall system workload [5]. In addi-
tion, it does not use JMS selectors.

To meet the growing demand for benchmarking pub/sub
middleware, we developed a performance harness for pub/sub
using the SPECjms2007 framework as a basis. In this demon-
stration we present our benchmark called jms2009-PS. We
kept the business logic of SPECjms2007, but instead of us-
ing PtP communication, we applied pub/sub for all kinds of
message exchange making heavy use of selectors. Further-
more, we extended the workload scenario by incorporating
additional flexibility to customize workloads.

2. SPECJMS2007
2.1 Workload Scenario
The application scenario models a supermarket’s supply
chain where RFID technology is used to track the flow of
goods. The participants involved are the supermarket’s com-
pany headquarters (HQ), its stores (SMs), its distribution
centers (DCs) and its suppliers (SPs). SPECjms2007 defines
seven interactions between the participants in a supermarket
supply chain:

1. Order/shipment handling between SM and DC

2. Order/shipment handling between DC and SP

3. Price updates sent from HQ to SMs

4. Inventory management inside SMs

5. Sales statistics sent from SMs to HQ

6. New product announcements sent from HQ to SMs

7. Credit card hot lists sent from HQ to SMs

While interactions 1 and 2 represent a chain of messages, the
other interactions include a single message exchange [4]. The
workload specification defines 19 different message types and
their properties ((non-)transactional, (non-)persistent, etc.)
as well as a list of queues and topics.



2.2 Framework
SPECjms2007 is implemented as a Java application compris-
ing multiple JVMs and threads distributed across a set of
client nodes. For every destination (queue or topic), there is
a separate Java class called Event Handler (EH) that encap-
sulates the application logic executed to process messages
sent to this destination. Event handlers register as listeners
for the queue/topic and receive call backs from the mes-
saging infrastructure as new messages arrive. In addition,
for every physical location, a set of threads (referred to as
driver threads) is launched to drive the benchmark interac-
tions that are logically started at this location.

An important component of the framework is the measure-
ment functionality. Event handlers measure the delivery
time of each incoming message, the total number of re-
ceived/sent messages by source/target and their execution
time. After a specified interval and at the end of the exper-
iment, controller threads collect the measured data and pre-
pare it for further processing. These measurements are used
for runtime statistics and, later on, for reports at different
granularity. Additionally, a postauditor checks the measure-
ment results based on a set of rules (e.g. all messages were
received) to validate the correctness of a test run. Further
features are a preauditor and a prediction component which
calculates the expected throughput.

3. JMS2009-PS - A PUB/SUB BENCHMARK
In this demonstration we present a novel benchmark for
pub/sub systems: jms2009-PS. We built jms2009-PS on top
of the SPECjms2007 framework and implemented the work-
load using pub/sub communication for each interaction in
two different ways: a) using one topic per interaction and
b) using one topic per step (message type) in an interaction.
The two implementations are identical concerning the to-
tal number of messages/traffic and subscriptions. However,
they differ in four important points:

1. number of topics,

2. traffic per topic,

3. complexity of filter statements and

4. number of subscribers per topic.

In our first implementation, all types of messages are ex-
changed using one common topic per interaction. Each mes-
sage consumer (e.g. order department in DC 1) subscribes
to this topic using two different filter values which define
the messages he is interested in: message type (e.g. or-
ders) and their own location ID (e.g. DC 1). To be able
to identify the corresponding message consumer the middle-
ware requires that the message producers have previously
assigned these two properties (message type, location) to
each incoming message.

Our second implementation assigns a specific topic to each
type of message (e.g. one topic for orders, one for invoices).
Consequently, message consumers do not have to specify the
message type of their interest at subscription time, but only
their location ID. It is easy to see that a) the number of
subscribers per topic decreases and b) the filtering is simpler
(only one property to check) in the second implementation
compared to the first one. Therefore, the two implementa-
tions stress the system in various ways and allow to evaluate

different performance aspects. The user can decide for each
interaction which implementation to use. Additionally, we
extended the existing workload by adding new features. For
example, a user can decide for each step in an interaction
whether a persistent or non-persistent message is sent as well
as whether subscriptions are durable.

4. DEMONSTRATION
Our demonstration shows how to use jms2009-PS for per-
formance evaluation of pub/sub middleware and provides
an introduction to the underlying SPECjms2007 framework.
We explain how to create a custom workload scenario and
illustrate how to setup and run the benchmark. Finally, we
have a closer look at the result reports and present some
experimental results.

5. ONLINE RESOURCES
A detailed description of SPECjms2007 including a user’s
guide and a design document is available at [6]. A compre-
hensive description of the workload and a case study using
customized scenarios can be found in [4]. A document de-
scribing the new features of jms2009-PS is under way and
will be available soon at the authors’ website.

6. CONCLUSIONS
jms2009-PS is a powerful tool to evaluate pub/sub middle-
ware using a comprehensive workload. Given that jms2009-
PS is built on top of SPECjms2007, it uses the JMS standard
interface. It allows to analyse different features of pub/sub
middleware and their influence on the system’s throughput
and performance. jms2009-PS is a major contribution in the
area of pub/sub benchmarking and performance engineering
of event-based systems. Our future research will focus on
case studies using jms2009-PS as well as the development of
a benchmark for distributed event-based systems.

7. REFERENCES
[1] A. Carzaniga and A. L. Wolf. A Benchmark Suite for

Distributed Publish/Subscribe Systems. Technical
report, Department of Computer Science, University of
Colorado, 2002.

[2] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec. The Many Faces of Publish/Subscribe.
ACM Computing Surveys, 35(2):pages 114–131, 2003.

[3] J. Happe, H. Friedrich, S. Becker, and R. H. Reussner.
A pattern-based Performance Completion for
Message-oriented Middleware. In Proc. of the 7th
International Workshop on Software and Performance
(WOSP), pages 165–176. ACM, 2008.

[4] K. Sachs, S. Kounev, J. Bacon, and A. Buchmann.
Performance evaluation of message-oriented middleware
using the SPECjms2007 benchmark. Performance
Evaluation, 2009. To appear, online available via
doi:10.1016/j.peva.2009.01.003.

[5] K. Sachs, S. Kounev, and A. Buchmann. Performance
Modeling of Message-Oriented Middleware - A Case
Study. 2009. In review.

[6] Standard Performance Evaluation Corporation.
SPECjms2007. http://www.spec.org/jms2007/, 2009.

[7] Sun Microsystems, Inc. Java Message Service (JMS)
Specification - Version 1.1. Technical report, 2002.


