

Page Size Selection for OLTP Databases on SSD Storage
Ilia Petrov, Todor Ivanov, Alejandro Buchmann

Databases and Distributed Systems Group, Department of Computer Science,
Technische Universität Darmstadt

{petrov | ivanov | buchmann}@dvs.tu-darmstadt.de

Abstract. Flash SSDs are a technology that has the potential of changing the
database architecture and principles. We reevaluate present trend of growing
database page sizes considering its validity for SSD-based database storage.
Our major findings are: (a) on Flash storage this trend is reverted and best
OLTP performance can be attained with smaller page sizes; (b) DBMS with
smaller page sizes require less buffer space while providing the same
performance; (c) due to the lower response times we report better CPU
utilization for small page sizes.

1. Introduction
Over past two decades the standard page size used by database systems has been
continuously growing. This is viewed as an established trend by the database
community [ScAG03, GrGr97, Grae08]. Larger page sizes and hence larger database
buffers compensate for the poor IO properties of magnetic hard drives, minimizing the
so called access gap. Over the last two decades the accesses per second and the transfer
rate improved only about 10 times, while capacities grew by a factor of 1000
[Grae08,GrGr97]. Hard disks as storage technology have reached their physical limits
hence no significant technological improvement can be expected. Flash Solid-State
Disks (SSDs), on the other hand, are a disruptive technology, that has the potential of
changing the established principles of DBMS architecture. In comparison (Table 1),
SSDs exhibit low latency and very high random throughput (accesses per second or
simply IOPS–Input/Output Operations Per Second) especially for small block sizes.

Please consider the following introductory example: while the typical hard
drive’s random throughput remains constant for block sizes between 4KB and 32KB,
the SSD performance ranges significantly (up to seven times) within the same block
range (Figure 3, Table 1) – the smaller the block size the higher the random throughput.
This fact influences significantly the OLTP database performance on SSD storage. In
the present paper we explore this hypothesis.

Table 1. Comparison of enterprise HDDs, SSDs

D
ev

ic
e

S
eq

. R
ea

d

[M

B
/s

] (
12

8K
)

S
eq

. W
rit

e
[M

B
/s

](1
28

K
)

R
an

d.
 R

ea
d

[m
s]

 (4
 K

B
)

R
an

d.
 W

rit
e

[m
s]

 (4
 K

B
)

R
an

d.
 R

ea
d

[m
s]

 (1
6

K
B

)

R
an

d.
 W

rit
e

[m
s]

 (1
6K

B
)

R
ea

d
IO

P
S

(4

 K
B

)

W
rit

e
IO

P
S

(4

 K
B

)

R
ea

d
IO

P
S

(1

6
K

B
)

W
rit

e
IO

P
S

(1

6
K

B
)

P
ric

e
[€

/G
B

]

E. HDD 160 160 3.2 3.5 3.3 3.4 291 287 288 285 2.5

E. SSD 250 180 0.161 0.125 0.294 0.377 35 510 5 953 12 743 3 665 10

The contributions of the present work can be shortly summarized as follows:
(a) SSD storage characteristics revert the trend of increasing page sizes of database
systems. We claim that for OLTP databases a smaller 4KB page size is better choice
than a larger one, e.g. 16 KB.
(b) Smaller block sizes relax the demand for essential buffer space. Larger buffers can
be used to additionally improve performance by buffering more data or for providing
space for maintenance operations such as index rebuilding etc.
(c) We claim that all database systems (not only several commercial ones) should
support multiple dynamically configurable block sizes. And the “default” block size
should be smaller (in the range of 4KB to 8KB) since it influences the database
catalogue.
(d) Last but not least higher CPU utilization can be observed for OLTP databases,
which are typically IO-Bound environments. This is a result of the lower response times
for small block operations. This increased CPU demand is a natural fit for the multi-
core CPU trend.
The present paper is structured as follows: we continue by examining the IO properties
of Flash SSDs and describing the system under test. Next we investigate the database
page size influence on the performance of an OLTP database. We use TPC-C as a
standard OLTP workload. Last but not least we summarize our findings.

1.1 Related Work
There is a large body of research on the properties of NAND SSDs [ChKZ09,
APW+08], the design of Flash Translation Layer. Research influence of Flash SSDs in
the database field [LeMP09, LMP+08] reflects primarily logging [LeMo07], indexing
[YBH+09], page organization for analytical loads and its influence on joins [SHWG08,
DoPa09]. There are new algorithms and data structures emerging. They address issues
such as indices, page formats, logging and log record formats [NaKa07, LeMo07,
SHWG08, YBH+09]. [Grae08] outlines the influence of SSDs on 5-Minute-Rule and
discusses the influence of flash properties the node utility metric and on the page size of
an B-Tree database storage. [Grae08] proposes an optimal page size of 2KB. A detailed
analysis of the database page size influence on performance does not exist.

2. Enterprise Flash SSDs
The performance Flash SSDs is characterized through: low latency (Table 3); very high
random throughput (Figure 1); acceptable sequential performance (Figure 2); low power
consumption. In the following we extend on these points.

 (a) asymmetric read/write performance – the read performance is significantly
better than the write performance – up to an order of magnitude (Figure 1, Figure 2).
This is due to the internal organization of the NAND memory, which comprises two
types of structures: pages and blocks. A page (typically 4/2 KB) is a read and write unit.
Pages are grouped into blocks of 32/128 pages (128/512KB). NAND memories support
three operations: read, write, erase. Reads and writes are performed on page-level, while
erases are performed on block level. Before each write, the whole block containing the
page must be erased, which is a time-consuming operation. The respective latencies are:

read-55μs; write 500μs; erase 900μs. Writes should be evenly spread across the whole
volume (longevity, wear-leveling). Hence no write in-place as on HDDs.

(b) excellent random read throughput (IOPS) – especially for small block sizes.
Small random reads are up to hundred times faster than on an HDD (Table 1). The good
small block performance (4KB, 8KB) affects the present assumptions of generally
larger database page sizes.

Figure 1: Random throughput (IOPS)

Figure 2: Sequential throughput (MB/s)

Figure 3: Random throughput HDD, SSD

Table 2. Avg/Max latency (4KB)
Sequential Read (SR) 53 µs max 12.29 ms

Sequential Write (SW) 59 µs max 94.82 ms
Random Read (RR) 167 µs max 12.41 ms

Random Write (RW) 125 µs max 100.68 ms

 (b) acceptable random write throughput – small random writes are 5x to 10x
slower than reads (Figure 1). Nonetheless, the random write throughput is an order of
magnitude better than that of an HDD (Table 1). Unfortunately it changes over time.

(c) very good sequential read/write transfer. It is commonly assumed that HDDs
are better for sequential operations. The newer generations of SSDs perform
significantly better (Figure 2, Table 1).

(d) Command Queuing (CQ) allows several IO requests to be executed in
parallel. It enables database systems to successfully use asynchronous paged I/O in
OLTP environments where traditional blocked I/O cannot be used. CQ is very
beneficial for small random reads, where doubling the queue depth (up to eight
commands) doubles the throughput while keeping the latency almost constant below
0.28 ms (for 8KB block size). The reason for this improvement is the better utilization
the internal SSD parallelism and request interleaving capabilities. CQ has less of an
effect on random write, where the performance is only marginally better. There are
significant benefits of CQ for sequential read or sequential write because it translates to
read ahead or write-back. In these cases increasing the queue depth (up to 32
commands) increases the data transfer rate up to saturation while keeping the latency
almost constant below 0.3 ms (64KB block size).

3. Experimental Setup
We investigated our hypotheses by performing TPC-C experiments on a testbed

comprising a MySQL database and SSD storage described below. The used benchmark
- DBT2 [DBT10] is an open source TPC-C implementation [TPCC10] on top of
MySQL version 5.1.44 with innoDB 1.06. DBT2 is instrumented according to the TPC-
C specification (Section 4.2.2 of the TPC-C specification [TPCC10]), i.e. to use 20
database connections and 10 terminals per warehouse. The standard MySQL codebase
uses a static page size of 16KB. In addition we reconfigured and recompiled it for a
page size of 4KB. For all experiments the block size (of the file system) and the
database page size are configured to be identical. The TPC-C tests were performed on
both versions for different CPU and RAM configurations. We measure the average
response time and the average throughput in new order transactions per minute
(NoTPM) by varying the number of warehouses, to increase the load on the system. The
dataset contains 800 warehouses amounting to approx. 100GB. As defined in Section
4.2 of the TPC-C specification [TPCC10] we preserve the specification defined ratio of
connections and terminals (and hence transactions) per warehouse – therefore the only
way to increase the load on the system is to increase the dataset in terms of
warehouses(Figure 4). (This not only loads the IO-subsystem, it also increases the
memory demand of the buffer manager.) The used server is a SUN Fire x4440 with four
quad-core AMD processors, 64GB RAM and enterprise-level RAID controllers with
512MB cache with 8 SSDs running under Windows 2008 Server R2. Depending on the
type of experiment the resources are limited.

We measured the performance of the IO-system initially with IOMeter [Iome10]
and validated the results with Oracle Orion [Orio10]. Table 3 reports the sequential and
random throughput as well as sequential and random latency for different block sizes.

Table 3: Performance of SSD storage. (a) top-left Sequential throughput and latency; (b) top-
right random throughput and latency 

BlockSize 
Seq. Read 
MB/s 

Seq.Write 
MB/s 

Avg. Read 
Latency[ms] 

Avg.Write 
Latency[ms] 

8KB  391  547  0.179  0.111 
16KB  672  781  0.200  0.127 
32KB  972  897  0.283  0.176 
64KB  1341  792  0.323  0.255 
128KB  1350  848  0.460  0.426 
256KB  1349  881  0.606  0.669 
512KB  1350  891  0.742  1.160 

BlockSize 
Rand. Read 

IOPS 
Rand. Write 

IOPS 
Avg. R.Read 
Latency [ms] 

Avg. R.Write 
Latency [ms] 

4KB  51164  23661  0.276  0.106 
8KB  46156  21372  0.330  0.116 
16KB  36448  15893  0.430  0.135 
32KB  26176  12065  0.512  0.171 
64KB  16623  7542  0.651  0.242 
128KB  9674  3274  0.728  0.359 

Based on the figures in Table 3 and general database experience we can draw the
following conclusions: (i) In contrast to HDD storage SSDs storage can offer high
sequential bandwidth and high random throughput at the same time. For database
systems this requires database support for multiple concurrent page-sizes to harness the
random and sequential performance. (ii) performance is asymmetric (better reads than
writes). (iii) Sequential throughput is naturally better for larger block sizes, while the
random throughput is better for small block sizes. Please notice the performance
difference between 4KB and 16KB blocksize. OLTP databases should use small page
sizes to harness the random performance. (iv) The lower the block size the lower the
random latency (Table 3 (b)). (v) extensive use of command queuing (asynchronous
I/O) improves the performance significantly. For OLTP databases the use of blocked IO

can be successfully replaced by asynchronous paged IO due to the good command
queuing behavior.

4. Performance Influence of Database Page Sizes
The database research community has widely recognized the trend of growing database
page sizes to compensate for the IO characteristics of magnetic disks. Small random
accesses (omnipresent in OLTP environments) are a weakness of existing HDDs. For
large sequential operations (blocked IO) the HDD efficiency increases since the transfer
rate dominates over the positioning costs. Large blocks however lead to larger database
buffers. As pointed out by [ScAG03, ScAG03, Grae08] there is a compromise between
IO efficiency and buffer size. However a larger page size stands in stark contrast to the
characteristics of SSDs.

Figure 4 (a) top-left - throughput NoTPM, 4KB; (b) top-right - response times 4KB; (c)

bottom-left - throughput NoTPM, 16KB; (d) bottom-right - response times 16KB

Figure 4 summarizes the test results of the TPC-C experiments for different page
sizes, buffer sizes and CPUs. We clearly observe a 30% performance improvement in
transaction throughput (NoTPM) due to the page size performance influence (4KB over
16 KB). This very number can also be derived from the results in Table 3 considering
the 75%/25% read/write ratio DBT2 exhibits. The measured transaction throughput
improvement can be therefore clearly attributed to the SSDs characteristics. These
figures substantiate the claim that SSD storage reverts the trend towards larger page
sizes. We claim that depending on the use of indices versus direct table operations the
optimal page size is between 2KB and 4KB.

Table 4 Max. TPC-C throughput (NoTPM) for different buffer sizes and number of CPUs
1 CPU  2 CPUs  4 CPUs 

DB Buffer  P.Size 4KB  P.Size 16KB  P.Size 4KB  P.Size 16KB  P.Size4KB  P.Size 16KB 
640MB  3183  2646  4619  3665  5197  3993 
1280MB  3489  2868  4999  3937  5707  4322 
2560MB  3851  3173  5563  4374  6404  4830 

Table 5 Response times (New Order Transactions) in [s] for different buffer
sizes and number of CPUs for the maximum throughput values in Figure 4.

1 CPU  2 CPUs  4 CPUs 
DB Buffer  P.Size 4KB  P.Size 16KB  P.Size 4KB  P.Size 16KB  P.Size4KB  P.Size 16KB 
640MB  1.49  1.71  0.92  1.53  0.76  1.23 
1280MB  1.06  1.47  0.70  0.70  0.44  0.71 
2560MB  0.35  1.56  0.30  0.51  0.34  0.68 

(a) different buffer sizes – CPU constant (a) different CPUs – buffer size constant

Figure 5: Increase in transactional throughput (NoTPM) with respect to CPUs
and Buffer Sizes (figures based on Table 4 data, 4KB page size)

Let us now consider Table 4 (which contains the NoTPM maxima from Figure
4) and the relation between buffer size, page size and transaction throughput. Clearly for
the same number of CPUs and the same buffer size there is a 30% performance
advantage for the 4KB page size over 16KB. Consider the data for four CPUs (Table 4):
the NoTPM throughput for 4KB page size and 640MB buffer size is comparable (7%
better) than the throughput for 16KB page size and 2560MB buffer size (page size and
buffer size are four times larger). The same result is visible in the two CPU data. This
observation is even more interesting in light of the TPC-C access skew [HsSY01] due to
which comparatively small database buffers can significantly reduce the number of
accesses (for instance buffering 10% of the database pages reduces 50% of all accesses).
On this basis we can conclude that smaller page sizes relax the demand for essential
buffer space.

Table 5 shows the average response times for the New Order transaction
([TPCC10]) for the maxima (Table 4). It can be clearly seen that the difference of
transaction throughput is reflected at the response times as well. The maxima in
transaction throughput for 4KB page size are not only 30% higher they are also
achieved at lower response times. This results should not be surprising – it is a direct
consequence of the results described in Section 1 (Table 2) and Section 6 (Table 3 (b)).

Last but not least OLTP databases on SSD storage exhibit good CPU utilization
due to the lower response times. The transaction throughput and response times in Table
4 and Table 5 improve with the higher number of CPUs. Figure 5 depicts the
transactional throughput over the different database buffer sizes (a) and number of
CPUs (b). We observe an increase in NoTPM with more CPUs and larger buffer sizes.
More importantly it seems that doubling the CPUs and doubling the buffer size yields
the similar increase in the transactional throughput (CPU increase has slightly stronger
effect). Although the curves on Figure 5 (b) are will possibly flatten with 8 CPUs this is
still a very interesting observation in an IO-bound environment under test. HDD based

systems will not exhibit such behavior: they will be influenced more by the buffer
increase and remain practically unaffected by CPU increase (in the same resource
range). Clearly the higher random performance and lower latency on the SSD storage
yield better CPU utilization. Hence the demand for more CPU power which leverages
the multicore-CPU trend.

7. Conclusions
The access gap between memory and HDD has been constantly increasing due to
hardware developments. To compensate for the low random performance, page sizes for
OLTP database systems have been growing (16KB, 32KB). SSDs however offer
superior random performance for smaller block sizes (4KB), which reverts the
established trend towards larger page sizes.

In the present paper we proved this hypothesis by performing TPC-C
experiments on a database system configured with 4KB and 16KB page sizes on SSD
storage. We observe a 30% performance and response time improvement for the smaller
block size. In addition we see that on SSD storage databases with smaller page sizes
require proportionally less buffer space while offering comparable performance. Last
but not least OLTP databases on SSD storage exhibit good CPU utilization due to the
lower response times. Since these vary with the page size the smaller the page size the
higher the CPU utilization.

SSD storage can offer both good random and sequential throughput depending
on the block size. It is therefore important to support multiple concurrent block sizes to
accommodate the requirements of different database objects types and access patterns.

Acknowledgement
This work has been partially supported by the DFG project “Flashy-DB”.

References
[HsSY01] Hsu, W. W., Smith, A. J., and Young, H. C. 2001. Characteristics of

production database workloads and the TPC benchmarks. IBM Syst. J. 40, 3 (Mar.
2001), 781-802.

[LMP+08] Lee, S.-W., B. Moon, C. Park, J.-M. Kim, S.-W.Kim. A Case for Flash
Memory SSD in Enterprise Database Applications. In Proc. of the ACM SIGMOD,
pp. 1075–1086, 2008.

 [Orio10] Oracle Corp. ORION (Oracle I/O Calibration Tool)
http://oracle.com/technology/software/tech/orion/index.html

[Iome10] IOMeter project. www.iometer.org.
 [ChKZ09] Chen, F., Koufaty, D. A., and Zhang, X. Understanding intrinsic

characteristics and system implications of flash memory based solid state drives. In
Proc. of SIGMETRICS '09 (Seattle, WA, USA, June 15 – 19), 2009

[APW+08] Agrawal, N., Prabhakaran, V., Wobber, T., Davis, J. D., Manasse, M.,
Panigrahy, R. Design tradeoffs for SSD performance. In USENIX08 Boston, MA,
June 2008.

[LeMP09] Lee, S., Moon, B., and Park, C. 2009. Advances in flash memory SSD
technology for enterprise database applications. In Proc. SIGMOD, Rhode Island,
USA, July 2009

 [LeMo07] Lee, S. and Moon, B. Design of flash-based DBMS: an in-page logging
approach. In Proceedings of the 2007 ACM SIGMOD international Conference on
Management of Data (Beijing, China, June 11 - 14, 2007). SIGMOD '07.

[YBH+09] Yinan Li, Bingsheng He, Qiong Luo, Ke Yi, Tree Indexing on Flash Disks,
ICDE, pp.1303-1306, 2009 IEEE ICDE, 2009

[SHWG08] Shah, M. A., Harizopoulos, S., Wiener, J. L., and Graefe, G. 2008. Fast
scans and joins using flash drives. In Proceedings of DaMoN '08 (Vancouver,
Canada, June 13 - 13, 2008).

[DoPa09] Do, J. and Patel, J. M. 2009. Join processing for flash SSDs: remembering
past lessons. In Proceedings of the DaMoN '09 (Providence, Rhode Island, 2009).

[NaKa07] Nath, S. and Kansal, A. 2007. FlashDB: dynamic self-tuning database for
NAND flash. In Proceedings of the 6th international Conference on information
Processing in Sensor Networks (Cambridge, Massachusetts, USA, April, 2007).

[Grae08] Graefe, G. 2008. The Five-minute Rule 20 Years Later: and How Flash
Memory Changes the Rules. Queue 6, 4 (Jul. 2008), 40-52.

[ScAG03] Schindler, J., Ailamaki, A., and Ganger, G. R. 2003. Lachesis: robust
database storage management based on device-specific performance characteristics.
In Proceedings of VLDB (Berlin, Germany, September 09 - 12, 2003)

[DBT10] Database Test Suite. DBT2. http://osdldbt.sourceforge.net/
[GrGr97] Gray, J. and Graefe, G. 1997. The five-minute rule ten years later, and other

computer storage rules of thumb. SIGMOD Rec. 26, 4 (Dec. 1997)
[TPCC10] TPC Benchmark C. Standard Specification. Revision 5.11. February 2010

http://www.tpc.org/tpcc/spec/tpcc_current.pdf

