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Abstract. Flash SSDs are a technology that has the potential of changing the 
database architecture and principles. We reevaluate present trend of growing 
database page sizes considering its validity for SSD-based database storage. 
Our major findings are: (a) on Flash storage this trend is reverted and best 
OLTP performance can be attained with smaller page sizes; (b) DBMS with 
smaller page sizes require less buffer space while providing the same 
performance; (c) due to the lower response times we report better CPU 
utilization for small page sizes.  

1. Introduction 
Over past two decades the standard page size used by database systems has been 
continuously growing. This is viewed as an established trend by the database 
community [ScAG03, GrGr97, Grae08]. Larger page sizes and hence larger database 
buffers compensate for the poor IO properties of magnetic hard drives, minimizing the 
so called access gap. Over the last two decades the  accesses per second and the transfer 
rate improved only about 10 times, while capacities grew by a factor of 1000 
[Grae08,GrGr97]. Hard disks as storage technology have reached their physical limits 
hence no significant technological improvement can be expected. Flash Solid-State 
Disks (SSDs), on the other hand, are a disruptive technology, that has the potential of 
changing the established principles of DBMS architecture. In comparison (Table 1), 
SSDs exhibit low latency  and very high random throughput (accesses per second or 
simply IOPS–Input/Output Operations Per Second) especially for small block sizes.  

Please consider the following introductory example: while the typical hard 
drive’s random throughput remains constant for block sizes between 4KB and 32KB, 
the SSD performance ranges significantly (up to seven times) within the same block 
range (Figure 3, Table 1) – the smaller the block size the higher the random throughput. 
This fact influences significantly the OLTP database performance on SSD storage. In 
the present paper we explore this hypothesis. 

Table 1. Comparison of enterprise HDDs, SSDs  
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E. HDD 160 160 3.2 3.5  3.3 3.4 291 287 288 285 2.5 

E. SSD 250 180 0.161 0.125  0.294 0.377 35 510 5 953 12 743 3 665 10 



  

The contributions of the present work can be shortly summarized as follows: 
(a) SSD storage characteristics revert the trend of increasing page sizes of database 
systems. We claim that for OLTP databases a smaller 4KB page size is better choice 
than a larger one, e.g. 16 KB.  
(b) Smaller block sizes relax the demand for essential buffer space. Larger buffers can 
be used to additionally improve performance by buffering more data or for providing 
space for maintenance operations such as index rebuilding etc.  
(c) We claim that all database systems (not only several commercial ones) should 
support multiple dynamically configurable block sizes. And the “default” block size 
should be smaller (in the range of 4KB to 8KB) since it influences the database 
catalogue.  
(d) Last but not least higher CPU utilization can be observed for OLTP databases, 
which are typically IO-Bound environments. This is a result of the lower response times 
for small block operations. This increased CPU demand is a natural fit for the multi-
core CPU trend.  
The present paper is structured as follows: we continue by examining the IO properties 
of Flash SSDs and describing the system under test. Next we investigate the database 
page size influence on the performance of an OLTP database. We use TPC-C as a 
standard OLTP workload. Last but not least we summarize our findings. 

1.1 Related Work 
There is a large body of research on the properties of NAND SSDs [ChKZ09, 
APW+08], the design of Flash Translation Layer. Research influence of Flash SSDs in 
the database field [LeMP09, LMP+08] reflects primarily logging [LeMo07], indexing 
[YBH+09], page organization for analytical loads and  its influence on joins [SHWG08, 
DoPa09].  There are new algorithms and data structures emerging. They address issues 
such as indices, page formats, logging and log record formats [NaKa07, LeMo07, 
SHWG08, YBH+09]. [Grae08] outlines the influence of SSDs on 5-Minute-Rule and 
discusses the influence of flash properties the node utility metric and on the page size of 
an B-Tree database storage. [Grae08] proposes an optimal page size of 2KB. A detailed 
analysis of the database page size influence on performance does not exist. 

2. Enterprise Flash SSDs 
The performance Flash SSDs is characterized through: low latency (Table 3); very high 
random throughput (Figure 1); acceptable sequential performance (Figure 2); low power 
consumption. In the following we extend on these points. 

 (a) asymmetric read/write performance – the read performance is significantly 
better than the write performance – up to an order of magnitude (Figure 1, Figure 2). 
This is due to the internal organization of the NAND memory, which comprises two 
types of structures: pages and blocks. A page (typically 4/2 KB) is a read and write unit. 
Pages are grouped into blocks of 32/128 pages (128/512KB). NAND memories support 
three operations: read, write, erase. Reads and writes are performed on page-level, while 
erases are performed on block level. Before each write, the whole block containing the 
page must be erased, which is a time-consuming operation. The respective latencies are: 



  

read-55μs; write 500μs; erase 900μs. Writes should be evenly spread across the whole 
volume (longevity, wear-leveling). Hence no write in-place as on HDDs. 

(b) excellent random read throughput (IOPS) – especially for small block sizes. 
Small random reads are up to hundred times faster than on an HDD (Table 1). The good 
small block performance (4KB, 8KB) affects  the present assumptions of generally 
larger database page sizes. 

 
Figure 1: Random throughput (IOPS)  

 
Figure 2: Sequential throughput (MB/s) 

 
Figure 3: Random throughput HDD, SSD 

Table 2. Avg/Max latency (4KB) 
Sequential Read (SR)  53 µs  max 12.29 ms 

Sequential Write (SW) 59 µs max 94.82 ms 
Random Read (RR) 167 µs  max 12.41 ms 

Random Write (RW) 125 µs max 100.68 ms 

  

 (b) acceptable random write throughput – small random writes are 5x to 10x 
slower than reads (Figure 1). Nonetheless, the random write throughput is an order of 
magnitude better than that of an HDD (Table 1). Unfortunately it changes over time. 

(c) very good sequential read/write transfer. It is commonly assumed that HDDs 
are better for sequential operations. The newer generations of SSDs perform 
significantly better (Figure 2, Table 1). 

(d) Command Queuing (CQ) allows several IO requests to be executed in 
parallel. It enables database systems to successfully use asynchronous paged I/O in 
OLTP environments where traditional blocked I/O cannot be used. CQ is very 
beneficial for small random reads, where doubling the queue depth (up to eight 
commands) doubles the throughput while keeping the latency almost constant below 
0.28 ms (for 8KB block size). The reason for this improvement is the better utilization 
the internal SSD parallelism and request interleaving capabilities. CQ has less of an 
effect on random write, where the performance is only marginally better. There are 
significant benefits of CQ for sequential read or sequential write because it translates to 
read ahead or write-back. In these cases increasing the queue depth (up to 32 
commands) increases the data transfer rate up to saturation while keeping the latency 
almost constant below 0.3 ms (64KB block size).  



  

3. Experimental Setup 
We investigated our hypotheses by performing TPC-C experiments on a testbed 

comprising a MySQL database and SSD storage described below. The used benchmark 
- DBT2 [DBT10] is an open source TPC-C implementation [TPCC10] on top of 
MySQL version 5.1.44 with innoDB 1.06. DBT2 is instrumented according to the TPC-
C specification (Section 4.2.2 of the TPC-C specification [TPCC10]), i.e. to use 20 
database connections and 10 terminals per warehouse. The standard MySQL codebase 
uses a static page size of 16KB. In addition we reconfigured and recompiled it for a 
page size of 4KB. For all experiments the block size (of the file system) and the 
database page size are configured to be identical. The TPC-C tests were performed on 
both versions for different CPU and RAM configurations. We measure the average 
response time and the average throughput in new order transactions per minute 
(NoTPM) by varying the number of warehouses, to increase the load on the system. The 
dataset contains 800 warehouses amounting to approx. 100GB. As defined in Section 
4.2 of the TPC-C specification [TPCC10] we preserve the specification defined ratio of 
connections and terminals (and hence transactions) per warehouse – therefore the only 
way to increase the load on the system is to increase the dataset in terms of 
warehouses(Figure 4). (This not only loads the IO-subsystem, it also increases the 
memory demand of the buffer manager.) The used server is a SUN Fire x4440 with four 
quad-core AMD processors, 64GB RAM and enterprise-level RAID controllers with 
512MB cache with 8 SSDs running under Windows 2008 Server R2. Depending on the 
type of experiment the resources are limited.  

We measured the performance of the IO-system initially with IOMeter [Iome10] 
and validated the results with Oracle Orion [Orio10]. Table 3 reports the sequential and 
random throughput as well as sequential and random latency for different block sizes. 

Table 3: Performance of SSD storage. (a) top-left Sequential throughput and latency; (b) top-
right random throughput and latency 

BlockSize 
Seq. Read 
MB/s 

Seq.Write 
MB/s 

Avg. Read 
Latency[ms] 

Avg.Write 
Latency[ms] 

8KB  391  547  0.179  0.111 
16KB  672  781  0.200  0.127 
32KB  972  897  0.283  0.176 
64KB  1341  792  0.323  0.255 
128KB  1350  848  0.460  0.426 
256KB  1349  881  0.606  0.669 
512KB  1350  891  0.742  1.160  

BlockSize 
Rand. Read 

IOPS 
Rand. Write 

IOPS 
Avg. R.Read 
Latency [ms] 

Avg. R.Write 
Latency [ms] 

4KB  51164  23661  0.276  0.106 
8KB  46156  21372  0.330  0.116 
16KB  36448  15893  0.430  0.135 
32KB  26176  12065  0.512  0.171 
64KB  16623  7542  0.651  0.242 
128KB  9674  3274  0.728  0.359  

Based on the figures in Table 3 and general database experience we can draw the 
following conclusions: (i) In contrast to HDD storage SSDs storage can offer high 
sequential bandwidth and high random throughput at the same time. For database 
systems this requires database support for multiple concurrent page-sizes to harness the 
random and sequential performance. (ii) performance is asymmetric (better reads than 
writes). (iii) Sequential throughput is naturally better for larger block sizes, while the 
random throughput is better for small block sizes. Please notice the performance 
difference between 4KB and 16KB blocksize. OLTP databases should use small page 
sizes to harness the random performance. (iv) The lower the block size the lower the 
random latency (Table 3 (b)). (v) extensive use of command queuing (asynchronous 
I/O) improves the performance significantly. For OLTP databases the use of blocked IO 



  

can be successfully replaced by asynchronous paged IO due to the good command 
queuing behavior. 

4. Performance Influence of Database Page Sizes 
The database research community has widely recognized the trend of growing database 
page sizes to compensate for the IO characteristics of magnetic disks. Small random 
accesses (omnipresent in OLTP environments) are a weakness of existing HDDs. For 
large sequential operations (blocked IO) the HDD efficiency increases since the transfer 
rate dominates over the positioning costs. Large blocks however lead to larger database 
buffers. As pointed out by [ScAG03, ScAG03, Grae08] there is a compromise between 
IO efficiency and buffer size. However a larger page size stands in stark contrast to the 
characteristics of SSDs. 

  

  
Figure 4 (a) top-left - throughput NoTPM, 4KB; (b) top-right - response times 4KB; (c) 

bottom-left - throughput NoTPM, 16KB; (d) bottom-right - response times 16KB  

Figure 4 summarizes the test results of the TPC-C experiments for different page 
sizes, buffer sizes and CPUs. We clearly observe a 30% performance improvement in 
transaction throughput (NoTPM) due to the page size performance influence (4KB over 
16 KB). This very number can also be derived from the results in Table 3 considering 
the 75%/25% read/write ratio DBT2 exhibits. The measured transaction throughput 
improvement can be therefore clearly attributed to the SSDs characteristics. These 
figures substantiate the claim that SSD storage reverts the trend towards larger page 
sizes. We claim that depending on the use of indices versus direct table operations the 
optimal page size is between 2KB and 4KB. 

Table 4 Max. TPC-C throughput (NoTPM) for different buffer sizes and number of CPUs 
1 CPU  2 CPUs  4 CPUs 

DB Buffer  P.Size 4KB  P.Size 16KB  P.Size 4KB  P.Size 16KB  P.Size4KB  P.Size 16KB 
640MB  3183  2646  4619  3665  5197  3993 
1280MB  3489  2868  4999  3937  5707  4322 
2560MB  3851  3173  5563  4374  6404  4830 



  

Table 5 Response times (New Order Transactions) in [s] for different buffer 
sizes and number of CPUs for the maximum throughput values in Figure 4. 

1 CPU  2 CPUs  4 CPUs 
DB Buffer  P.Size 4KB  P.Size 16KB  P.Size 4KB  P.Size 16KB  P.Size4KB  P.Size 16KB 
640MB  1.49  1.71  0.92  1.53  0.76  1.23 
1280MB  1.06  1.47  0.70  0.70  0.44  0.71 
2560MB  0.35  1.56  0.30  0.51  0.34  0.68 

 

  
(a) different buffer sizes – CPU constant (a) different CPUs – buffer size constant 

Figure 5: Increase in transactional throughput (NoTPM) with respect to CPUs 
and Buffer Sizes (figures based on Table 4 data, 4KB page size) 

Let us now consider Table 4 (which contains the NoTPM maxima from Figure 
4) and the relation between buffer size, page size and transaction throughput. Clearly for 
the same number of CPUs and the same buffer size there is a 30% performance 
advantage for the 4KB page size over 16KB. Consider the data for four CPUs (Table 4): 
the NoTPM throughput for 4KB page size and 640MB buffer size is comparable (7% 
better) than the throughput for 16KB page size and 2560MB buffer size (page size and 
buffer size are four times larger). The same result is visible in the two CPU data. This 
observation is even more interesting in light of the TPC-C access skew [HsSY01] due to 
which comparatively small database buffers can significantly reduce the number of 
accesses (for instance buffering 10% of the database pages reduces 50% of all accesses). 
On this basis we can conclude that smaller page sizes relax the demand for essential 
buffer space.  

Table 5 shows the average response times for the New Order transaction 
([TPCC10]) for the maxima (Table 4). It can be clearly seen that the difference of 
transaction throughput is reflected at the response times as well. The maxima in 
transaction throughput for 4KB page size are not only 30% higher they are also 
achieved at lower response times. This results should not be surprising – it is a direct 
consequence of the results described in Section 1 (Table 2) and Section 6 (Table 3 (b)).  

Last but not least OLTP databases on SSD storage exhibit good CPU utilization 
due to the lower response times. The transaction throughput and response times in Table 
4 and Table 5 improve with the higher number of CPUs. Figure 5 depicts the 
transactional throughput over the different database buffer sizes (a) and number of 
CPUs (b). We observe an increase in NoTPM with more CPUs and larger buffer sizes. 
More importantly it seems that doubling the CPUs and doubling the buffer size yields 
the similar increase in the transactional throughput (CPU increase has slightly stronger 
effect). Although the curves on Figure 5 (b) are will possibly flatten with 8 CPUs this is 
still a very interesting observation in an IO-bound environment under test. HDD based 



  

systems will not exhibit such behavior: they will be influenced more by the buffer 
increase and remain practically unaffected by CPU increase (in the same resource 
range). Clearly the higher random performance and lower latency on the SSD storage 
yield better CPU utilization. Hence the demand for more CPU power which leverages 
the multicore-CPU trend. 

7. Conclusions 
The access gap between memory and HDD has been constantly increasing due to 
hardware developments. To compensate for the low random performance, page sizes for 
OLTP database systems have been growing (16KB, 32KB). SSDs however offer 
superior random performance for smaller block sizes (4KB), which reverts the 
established trend towards larger page sizes.  

In the present paper we proved this hypothesis by performing TPC-C 
experiments on a database system configured with 4KB and 16KB page sizes on SSD 
storage. We observe a 30% performance and response time improvement for the smaller 
block size. In addition we see that on SSD storage databases with smaller page sizes 
require proportionally less buffer space while offering comparable performance. Last 
but not least OLTP databases on SSD storage exhibit good CPU utilization due to the 
lower response times. Since these vary with the page size the smaller the page size the 
higher the CPU utilization. 

SSD storage can offer both good random and sequential throughput depending 
on the block size. It is therefore important to support multiple concurrent block sizes to 
accommodate the requirements of different database objects types and access patterns. 
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