
Active Object-Relational Mediators

Thomas Kudrass, Andreas Loew, Alejandro P. Buchmann

TH Darmstadt, FB Informatik, FG Datenverwaltungssysteme 1

D-64293 Darmstadt, Frankfurter Str. 69 A

E-Mail: fkudrass, loew, buchmanng@dvs1.informatik.th-darmstadt.de

Abstract

This paper describes an active object-oriented medi-
ator for the enforcement of global consistency between
relational legacy databases. We discuss the problem of
integrating several local relational systems into a feder-
ated system by the usage of an object-oriented mediator
system. We explore how relational DBMSs can be en-
hanced to signal local updates that may violate global
constraints without sacri�cing too much autonomy and
present a database gateway for detection, logging and
signalling. We show how the gateway is embedded into
the architecture of an object-relational mediator sys-
tem. We give a solution to the problem of mapping
SQL commands to method calls in a C++ based system
using a so-called mediator generator. Furthermore, we
discuss how the federated system can be enriched by rule
mechanisms that make the mediator behave actively.

1 Introduction

Modern information systems tend to integrate ex-
isting heterogeneous systems into federations while
preserving the autonomy of the participating subsys-
tems. This guarantees that existing applications can
run without changes of their code and new applica-
tions can be developed that access the federated data.
This approach is a practical way to incorporate legacy
applications into future information systems.

When integrating heterogeneous systems, the prob-
lem of global consistency maintenance spanning mul-
tiple databases has to be solved by the federated sys-
tem. There is some work dealing with interdatabase
dependencies [22, 6, 17] resulting from the integration
of overlapping or dependent data that has been main-
tained autonomously. Besides the interdependencies,
all other kinds of integrity constraints as described in
[1, 8] for an object-oriented model (like uniqueness, ref-
erential integrity, structural constraints) can be applied

to a multidatabase environment. In this paper, we fo-
cus on local relational databases, which have become
the most popular platform in the last ten years, but
will be the legacy data of the future. We prefer an
object-oriented canonical data model due to its seman-
tic richness and openess against possible future object-
oriented local systems.

Active mechanisms are a promising approach for
consistency maintenance in federated systems. Al-
though the usage of the active object paradigm was
already proposed in the context of the DOM project [2],
existing prototypes of active OODBMS (e.g. REACH
[4], SAMOS [12], ODE [13], NAOS [10], Sentinel [9],
Chimera [7]) simply enhance homogeneous database
systems with active mechanisms. Analyzing the lim-
itations of existing active DBMSs [3, 25], it has to be
explored to what extent active features can be applied
in federated systems [21].

Due to the coexistence of several data models and
the local autonomy, some of the principles of homo-
geneous active DBMSs cannot easily be transferred to
a federated system. One of the crucial issues is the
detection of events both at the local level (i.e. a lo-
cal application interface) and at the global level that
is available to users of the federation. The problem of
local event detection derives from the fact that legacy
systems were neither designed nor engineered to signal
the relevant events. Figure 1 sketches a multidatabase
environment comprising di�erent local databases. The
database may be updated at two access levels. The
federated component responsible for consistency main-
tenance has to be aware of events caused by global
users as well as local users accessing single databases
through their existing local interfaces.

One possible solution we are presenting here is based
on the integration and mapping of local database op-
erations to operations in the federated system, where
they can be detected in the same way as globally sub-
mitted statements. Beyond the mapping from C++
operations to SQL statements, which has to be done



L

LDB 3

LDB 2

LDB 1

L
o

c
a

l
E

v
e

t
s

n

Queries
user

global Responses

G

model events

Federated DBMS

Knowledge Base

Active Mediator

triggered actions
Application

Programs

GUI

Input Data

local user

Figure 1. Multidatabase Environment (Sample Scenario)

by the federated system, we present a solution that
reversely maps local SQL statements to method calls.
These method calls can then trigger the rules that re-
store consistency.

The paper is organized as follows: In section 2, we
describe our gateway approach to detect local database
events. Section 3 discusses the structural mapping be-
tween tables and classes and introduces the chosen me-
diator platform Persistence1 , an object-relational sys-
tem. In section 4, the behavioral mapping of SQL
statements to C++ method calls we have contributed
to Persistence is presented. In section 5, the architec-
ture of our mediator prototype is sketched. We de-
scribe the concept of a mediator generator in section 6.
Section 7 is dedicated to active extensions of the me-
diators we are working on. The paper concludes with
an evaluation of the presented approach and gives an
outlook on open issues under research.

2 Monitoring Local Systems - The
Gateway Approach

2.1 Local Database Event Detection

When integrating a relational DBMS into a feder-
ated system, it has to be identi�ed which SQL com-
mands submitted at the local application interface are

1Persistence is a product of Persistence Software, Inc.

the signi�cant ones that have to be monitored. Ta-
ble 1 gives an overview of those database events to be
monitored by local components with respect to global
consistency.

Local event detection can be implemented through
various mechanisms (for a classi�cation of wrapping see
[27]):

� trigger mechanisms

� application wrapping

� database wrapping

Local application systems can be made active e.g.
by exploiting trigger mechanisms of the modern rela-
tional DBMSs, but they show too many restrictions,
which make their usage impractical for the purpose of
detection and signalling. The main drawback is the
restriction of triggers to react on INSERT, UPDATE
and DELETE commands, and their limited number per
command and table, which may cause conicts with ex-
isting triggers in local schemas. In Sybase, for example,
for a given table it is possible to have only one trigger
each on INSERT, UPDATE and DELETE commands,
so when the legacy application to be integrated into
a federation happens to use trigger mechanisms itself,
it is impossible to add the triggers needed to estab-
lish the federation, instead they will have to be merged
with the existing ones into a single complex trigger for
each operation and table. In addition to that, triggers



Table 1. Events and their Impact on Global Consisty

Event Signi�cance

DML operations (INSERT, UPDATE, DELETE) A�ect interdatabase dependencies (e.g. referential
constraints, value dependencies)

Transaction commands (BEGIN, COMMIT, Control the visibility of local updates to the global
ROLLBACK) user
Stored procedures Enable consistency rules �red by user-de�ned events
SELECT queries Read (possibly) globally inconsistent data
DDL operations (table manipulation) Violate the consistency between the local database

and the global database schema

mean a substantial change of the local schema, which
implies a loss of local autonomy.

Using a wrapping approach, the legacy code can
be inspected with respect to possible consistency vi-
olations. An application wrapper surrounds complete
legacy systems, both application code and data. Be-
cause of the individual nature of screens and functions,
the development of application wrapping requires spe-
cialized and time-consuming solutions.

While application wrapping surrounds complete
legacy systems (application code and data), database
wrapping is based on establishing an interface between
the application and the DBMS. This additional tier
can process all incoming commands before their sub-
mission to the DBMS. Client-server DBMSs commonly
allow to tap into the communication between clients
and the database server. Therefore, they are predes-
tined for a special database wrapping solution, viz. an
application-independent gateway on top of the local
DBMS.

Assessing the three mechanisms as sketched above,
it can be stated that no solution is complete. However,
in the current implementation, we proved the feasibility
of our database wrapping approach by using the Sybase
Open Server for the implementation of a gateway (see
�gure 2).

2.2 Architecture of the Gateway

The relational database gateway was implemented
in Sybase using the OpenServer library. Figure 2 gives
an overview of the components and their interactions.
Besides the gateway components, there are some pro-
grams to initialize all databases that will be monitored
by the gateway. The initialization comprises the cre-
ation of log tables and utility procedures, which has to
be done bypassing the gateway. Furthermore, it serves
for the con�guration of the gateway depending on the
kind of global consistency the user needs, for example,

immediate or eventual consistency. The kind of ser-
vice the gateway has to provide to the mediator can
be speci�ed. Figure 2 shows how the gateway together
with the actual database server appears to the client
applications, namely as complete SQL server where the
gateway is transparent.

Incoming SQL statements or batches of statements
are sent to the gateway, which directs them to an ana-
lyzer, instead of sending them directly to the database
server. The analyzer works in two passes. In the �rst
pass, a batch is split up into its statements. The analy-
sis of single statements is done in the second pass. The
result of the parsing step is processed in other compo-
nents of the gateway. The logging component records
each update event and enables inferring a database
state history (see section 2.3). The signalling compo-
nent is responsible for the communication with the me-
diator and enables the execution of a local command
under control of the mediator (see section 2.4 for the
description of the communication parameters). The
logging functionality can be suppressed, e.g for perfor-
mance reasons. The only purpose of the condensing
component is to tie the log entries to net e�ects in
the history. After the analysis of the original state-
ment this command together with additionally created
commands (in case of using the log component) is ei-
ther redirected to the actual server in a straightforward
manner or sent to the mediator (in case of global con-
trol of all statements). In [16] a complete description
of the Sybase gateway is given.

2.3 Local Event Logging

The gateway provides a logging facility to enable
the reconstruction of states that were valid at the de-
tection time because it may happen that there is a
time delay between the detection and the action to be
triggered. These anomalies are also described in the
literature about view maintenance [28] and are typical



Interface
SQL Language

Log Condensing

Signalling

SQL Server

Database Initialization

Routine

Logging

Event Handling SQL Analyzer

Server

Gateway

of the gateway
other interfaces

point of view

SQL Server from the application’s

Client
SQL client applications

Data Flow Logical Unit

ComponentControl Flow

Figure 2. Gateway Architecture

in warehousing environments. We distinguish between
extensional and intensional logging. Intensional log-
ging only comprises the logging of the statements and
the predicate that was taken from the WHERE clause.
But intensional logging may not be su�cient because
the interpretation of the predicate some time after the
event occurence leads to di�erent results if the database
state has evolved meanwhile.

Hence, we provide extensional logging. The log ta-
bles are created from the original tables by extending
them with additional columns (see table 2). By eval-
uating the WHERE clause before the actual execution
of the statement, each a�ected tuple is stored in the
log table.

The text of the original statements and the trans-
action commands are stored separately. To take into
account the local transaction semantics, a transaction
log table is maintained. Transaction statements are
logged in the same manner as DML statements, the
captured commands are begin, commit, rollback. The
assignment of statements to transactions is based on
their timestamps and the identi�er of the client server
connection. To reduce the number of entries in the
transaction, a condensed log algorithm calculates the
net e�ect of subsequent DML operations. The rules
shown in table 3 illustrate how a new entry results from
a combination of an existing one with a subsequent en-
try a�ecting the same tuple. They are similar to the

Table 2. Structure of Log Tables

Name Semantics

column 1, 2, ..., n user-de�ned semantics,
taken from the original table
Table

mod time time of the modi�cation
(system time)

mod type type of the modi�cation:
INS, DEL, UDE/UIN
(inserted, deleted,
old updated, new updated)

mod thr client identi�er of the
client server connection

mod usr login name of the user
mod ts timestamp (automatically

incremented, serves to order
operations)

di�erential snapshot refresh algorithm [14].

Deviating from this algorithm, a delete entry can-
not be aggregated with a subsequent insert: Due to
an object-oriented view this cannot be interpreted as
an object modi�cation because an object with a new
object identity is created after an insert.



Table 3. Condensation Rules

Condensed Entry
Log Entry

no entry delete insert update
delete delete - no entry delete
insert insert - - -
update update - insert update

2.4 Local Event Signalling

The gateway can be seen as part of the heteroge-
neous system, responsible for the communication with
the mediator which is capable of reacting to local
events. The signalling is performed similar to the gen-
eration of the log entries as described in section 2.3. It
is activated by the SQL analyzer and works by remote
procedure calls with a parameter data structure de-
scribing the information about statements to be moni-
tored. The parameters depend on the statement type.
The current implementation only considers the SQL
DML statements INSERT, DELETE, UPDATE. Fig-
ure 3 shows the current parameter data structure.

session_id
operation

type
login

username

password

dbname

where clause
tablename

columnname
expression

value spec
length

values

tuples

statement

Figure 3. RPC Parameter Data Structure

3 Bridging the Gap Between Relations
and Objects

3.1 Structural Forward Mapping from Objects to
Tables

In mostmultidatabase projects during the last years,
the object-oriented data model has been chosen as
global data model: Class structures, inheritance capa-
bilities and the concept of polymorphism allow to cap-
ture signi�cantly more semantics than the relational
model. Objects encapsulate the implementation of the
data and methods and separate implementations from
interfaces, and therefore an object-oriented model pro-
vides a natural mechanism for the translation to and
from other data models.

Up to now, there has been little agreement on an
object-oriented data access and query language, but
there is some standardization e�ort in progress by the
ODMG [5]. According to the ODMG speci�cation,
there is a mapping from the ODMG model constructs
to the C++ programming language. Hence, it appears
obvious to choose a C++ based model, as this also is
the global data model provided by the vast majority of
OODBMS vendors.

At the same time, relational databases remain the
dominant data repositories, and as such have to be in-
tegrated into federated databases. Looking for solu-
tions that link C++ based systems to existing rela-
tional databases, two di�erent approaches have been
taken: Some OODBMS vendors o�er additional tools
to access relational data from C++ applications (such
as ObjectStore's SQL Gateway), while alternatively,
there are a number of object- relational systems avail-
able (e.g. UniSQL [24], Subtleware [23] and Persistence
[20]), enabling the user to build object-based applica-
tions using relational systems as a storage base for their
persistent data.

3.2 The Persistence Product: Overview and Spe-
cial Features

The Persistence product provides development tools
that enable object-oriented applications to access in-
dustry standard relational database management sys-
tems (RDBMSs), such as Sybase, Oracle, Informix or
Ingres through a C++ interface. Persistence consists
of two major functional components: the Relational
Interface Generator (RIG) which generates portable,
database independent C++ classes mapped to relatio-
nal data and the Relational Object Manager (ROM),
implementingdatabase access and maintenance (object
integrity and transaction management) [15].



Given the appropriate object model, the Persis-
tence RIG creates a C++ class for each object in the
model. Every class implements its own set of meth-
ods for database interface, such as create persistent
or transient object instances, set or update object at-
tributes or relationships, query using object-oriented
features or ANSI SQL and delete objects from mem-
ory or database. Inheritance of attributes, methods
and relationships, particularly propagating superclass
queries to subclasses, and the usage of virtual methods
to support polymorphism are also supported.

Persistence maps associations to foreign keys in the
relational database, o�ering methods to access asso-
ciated objects through the de�ned relationship. Thus,
the application programmer can transparently navigate
class associations or aggregations without knowing how
they are implemented in the database.

3.2.1 Accessing Multiple Databases Simulta-

neously

The key feature that makes Persistence suitable for
the implementation of multidatabase mediators is its
exibility as far as accessing multiple databases is
concerned. Through the design of its class hierar-
chy, each Persistence-generated database class may be
mapped to a particular database system connection
(PS Connection) and table. The mapping may be even
changed dynamically while an application is running.
For example, an application could open connections to
an Oracle and a Sybase database, mapping the Cus-
tomer class to an Oracle table while mapping the cor-
responding Account class to Sybase [15].

3.2.2 Reverse Engineering of Relational Data-

bases: The Dictionary Reader

Persistence can read object model information directly
from the RDBMS's data dictionary or system tables,
allowing to automatically create C++ classes that cor-
respond to existing tables. The data dictionary reader
�lters information in the RDBMS's system tables into
a Persistence project structure: For all user tables in
the database, a corresponding Persistence class with
the table's columns as attributes of the appropriate
data types is created. Primary key information is used
to determine Persistence key objects (these are special
objects containing the primary key information main-
tained by Persistence), and foreign key information to
set up relations between participating classes. In the
current release, there are still some restrictions, as far
as determining correct cardinalities for the resulting
relations is concerned: Regardless of e.g. unique or

not null de�nitions and intermediate tables, every re-
lationship is set up to be a zero-or-one (source class)
to zero-or-many (destination class) relationship.The re-
verse engineering function of Persistence is restricted to
structures and, hence, does not comprise a mapping of
SQL operations.

4 Behavioral Mapping of SQL State-
ments to C++ Method Calls

The reverse mapping of SQL statements to C++
method calls (not provided by Persistence) has to face
two serious problems resulting from the mismatch be-
tween a dynamic interpretative query language like
SQL and the static compile-dependent approach of a
C++ method based interface: The �rst problem is
caused by the fact that the SQL language integrates the
two very di�erent tasks of data de�nition and data ma-
nipulation. From the present point of view, mapping
the data de�nition language (DDL) command subset
of SQL to C++ methods seems impossible. Even the
most simple schema modi�cation DDL command (such
as a create table) would have to be mapped to the cre-
ation of a new class in the C++ based data model, a
fact, which requires all the applications based on the
corresponding schema to be recompiled, thus making
an automatic mapping of SQL DDL commands com-
pletely impossible. A possible work-around for this
problem we are exploring is the use of noti�cation rules
to signal local schema modi�cations.

Although the mapping of data manipulation lan-
guage (DML) commands to C++ methods is possible,
as long as the underlying database schema is static, the
second problem arises when trying to create a database
independent SQL to C++ mapper process: The source
code of such a translator program will have to work on
the classes and attributes generated from the database
schema of a particular database, and as such be abso-
lutely dependent on the current database schema. This
problem will be addressed in section 6, where the con-
cept of the mediator generator will be described.

Aside from these problems, the mapping of SQL
DML statements accessing a particular database table
to the equivalent method calls on the corresponding
class in the equivalent C++ data model conforming
to the Persistence generated method interface is just
straightforward:

The SQL to C++ translator prototype we have
developed currently supports (in addition to a
CONNECT and DISCONNECT operation managing
database login and logout) only a subset of all possible
SQL DML commands, that is, the transaction man-
agement commands BEGIN, COMMIT and ROLL-



Table 4. Mapping of SQL Statements to Equiv-
alent Persistence Methods

SQL Statement Persistence Method Call

CONNECT Constructor PS Connection()
DISCONNECT Destructor PS Connection()
BEGIN beginTransaction()
COMMIT commitTransaction()
ROLLBACK rollbackTransaction()
INSERT Constructor <Class>()
UPDATE set<Attribute>()
DELETE remove()
SELECT selectMany()

BACK as well as the database manipulation commands
INSERT, UPDATE and DELETE and the SELECT
database query command2. An overview of the cur-
rently supported DML commands is presented in table
4.

While the implementation of the CONNECT and
DISCONNECT operations as well as the three trans-
action management operations is not very demanding,
the remaining operations are somewhat more tricky.
The complete description can be found in [18].

Having retrieved and fully parsed a SQL DML com-
mand on a particular class, our translation algorithms
work as follows: For each class in the application
schema Persistence generates a key object class which
contains each attribute of the primary key of that class
as data member. When creating a new object instance
of the application class, a corresponding key object is
created at the same time to ensure Persistence object
cache consistency. The special treatment of primary
and foreign key attributes is needed because Persis-
tence does not allow to change key attribute values
directly through a sethAttributei() method.

INSERT

1. Create a new non-persistent object of the respec-
tive class.

2. Retrieve the corresponding Persistence key ob-
ject.

3. In a loop for all attributes referenced in the IN-
SERT statement:

4. if the attribute is a primary key at-

tribute, call the appropriate set

hAttributei() method on the key object;

2Statements to be supported in the future enclose stored pro-

cedure calls and administration commands.

if the attribute is a foreign key at-

tribute, retrieve the related object out of
the corresponding class using the foreign
key value, then call the sethRelationshipi()
method on the new object just retrieved as
a parameter;

if the attribute is a non-key attribute,
call the appropriate set hAttributei()
method on the newly created object.

5. Store the updated key object into the new object.

6. Make the new object persistent using the
hClassi :: insert() method.

UPDATE

1. Retrieve all objects from the particular class,
for which the SQL WHERE expression holds
into a collection of objects (hClassi Cltn) from
this class, using the Persistence hClassi :: query
SQLWhere() method.

2. In a loop, for all objects in this collection:

3. In a loop over all attributes contained in the
SQL SET value assignment part:

4. if the attribute is a primary key at-

tribute, create a non-persistent object
(NPO) as a deep copy of the current
(persistent) object (PO), then change
the primary key attribute value in the
NPO to the desired value using the
sethAttributei() method on the NPO,
make the new NPO persistent and re-
move the old PO from the database;
if the attribute is a foreign key

attribute, retrieve the correspond-
ing related object with the new value
for the key attribute from the re-
lated class using the hRelatedClassi ::
queryKey() method, then call the
sethRelationshipi() method on the cur-
rent object using the object just re-
trieved as parameter for the call;
if the attribute is a non-key

attribute, just call the appropriate
sethAttributei() method.

DELETE

1. Retrieve all objects from the particular class, for
which the SQL WHERE expression holds into
a collection of objects (hClassi Cltn) from this



class, using the hClassi :: querySQLWhere()
method.

2. In a loop for all objects in this collection:

Remove the object using the hClassi ::
remove() method.

5 The Mediator Architecture

To deal with data from multiple sources, it is neces-
sary to apply an intelligent processing mechanism ca-
pable of extracting globally accessible data using aggre-
gation or selection operators. On the other side, when
querying data in a multidatabase environment, seman-
tic conicts regarding di�erent names, abstraction lev-
els and structures have to be solved, called the context
interchange problem in [19]. Global consistency con-
straints are also a kind of knowledge that goes beyond
the local applications. The gap between the globally
available data and the useful information may grow
in the future and needs solutions incorporating knowl-
edge about the local data. This knowledge can be im-
plemented in an additional software layer acting as a
mediator between the end user applications and the
databases. In [26], some tasks a mediator can execute
are presented. Among them we focus on the problem of
constraint management implemented using ECA rules.

Considering our sample environment, we have rela-
tional DBMSs and some clients. The Persistence-based
mediator process behaves just as a usual Sybase (or In-
formix) client. Having wrapped the database server by
the gateway, whenever a query is submitted by a lo-
cal client, it will be signalled to the mediator process,
translated and executed against the local DBMS. By
executing locally submitted SQL commands as C++
method calls, the consistency between the object cache
and the database is automatically maintained by the
Persistence ROM. The main problem to be solved is
the passing of the results in case of a SELECT state-
ment from the mediator process back to the gateway
process, so that the retrieved tuples are made available
to the local client. Figure 4 illustrates the data ow at
the submission of a local query.

6 The Mediator Generator

As stated in chapter 4, the main conceptual prob-
lem when trying to make the implementation of a me-
diator process independent from a particular database
schema (or Persistence object model, resp.) is the tran-
sition from the (possibly dynamic) SQL statements to
the static method interface generated by Persistence.

Facing this fact, we realized that, in order to be able
to implement a SQL to C++ mapping, we had to con-
�ne ourselves to an underlying, static database schema
in the form of a Persistence object model, for which we
could create an object model speci�c mediator appli-
cation.

To store the assignment of each class of the object
model to a DBMS participating in the federation a con-
nection map �le was introduced. We then developed
the idea of automatically generating such an object
model speci�c mediator by a specially designed "me-
diator generator" application, which should take the
Persistence object model and connection mapping in-
formation as input and generates the source code of a
Persistence based C++ mediator application for this
particular object model. SQL statements issued by lo-
cal database applications or interactive users should
be intercepted by the SQL gateway described in chap-
ter 2, and then, in spite of being directly processed
by the SQL server, passed to the generated media-
tor through the remote procedure call (RPC) interface
shown in section 2.3 (RPC XDR protocol interface �le
exec dml.x). The resulting mediator is a RPC server,
typically running as a background process, which waits
for RPC requests issued by its clients (the SQL gate-
ways), distinguishes them by the type of SQL command
to be executed and then does the appropriate transla-
tion from SQL to C++ according to section 4.

The mediator generator consists of two main mod-
ules: a lex/yacc-generated parser for Persistence object
models, which �lters the needed information about the
classes, attributes and relationships from the Persis-
tence object model description �le, and a preproces-
sor, which simply replaces a set of about 30 di�erent
preprocessor instructions in a series of mediator source
code templates, particularly the main mediator RPC
server module template Server.C.tmpl, with the object
model information just extracted.

There are three types of preprocessor instructions:

- pure replacement instructions simply replacing
the instruction with information gained from the
object model;

- loop instructions directing the control ow of the
preprocessor through the input template;

- condition instructions, which copy or skip source
code blocks from the input template depending
on whether some given conditions hold or not.

Using the loop instructions, for both classes and at-
tributes, a special source code block gets copied to the
output �le once for each class or attribute of a class,
respectively. In parallel, class and attribute indices



Persistance
Mediator Process

SQL -> C++ Mapper

Object Cache

Sybase-Gateway Local
Client

Database Server

Sybase

DML statements values
and results

Return

Query

Relational
Database

Persistence SQL methods

Query results (PS_ResultObject)

Connect

Figure 4. Communication Between Gateway, Mediator Process and Local Database Server

are increased, such that the replacement instructions
within a loop code block get replaced at each pass by
the name of the next class or attribute, respectively.
The condition instructions allow to copy or skip blocks
from the source code, for example in order to di�erenti-
ate between the handling of primary, foreign and non-
key attributes when updating an attribute (cf. section
4).

The complete structure of the mediator generation
process with all participating programs, �les and li-
braries is shown in �gure 5.

7 Active Capabilities of the Mediator

7.1 Active Processing: Hooks

Persistence o�ers the possibility to de�ne noti�ca-
tion hooks on classes, attributes and relationships. A
noti�cation hook is a C++ method de�ned on the re-
spective class which is called automatically whenever
the relating event will take place next (pre hook) or has
just taken place (post hook). Hooks are available on the
creation, removal, query and modi�cation of objects in
a class, the change of an attribute's value or the change
of a relationship or query of related objects.

When the Persistence RIG generates the code for
an object model, empty stubs for each of the de�ned
hooks are generated that can easily be extended to ex-
ecute every piece of code the user implements for the

method. In particular, it is possible to check whether a
set of conditions holds before taking a speci�c action.
The Persistence hooks can therefore be used to im-
plement the functionality of the standard ECA (event,
condition, action) rules [11] or the triggers in relational
systems, respectively. Although the coupling modes for
simple C++ hooks are immediate (for example, the ac-
tions in an if-block are executed immediately after the
condition has been checked), it is nevertheless possible
to realize even the more complex deferred or detached
coupling modes [3] using threads and interprocess com-
munication features.

7.2 Event Processing in a Heterogeneous System

In a �rst attempt, rules were implemented using
hook methods. The next step we are working on is
the implementation of a rule management component
de�ning rules as subclasses of a common superclass
Rule. Following this approach, the hooks only detect
the event and activate the rule management module
by calling a raise method describing the event type to-
gether with its parameters. The rules are part of the
metadata maintained by the federated system and ac-
cessed by the mediator.

As stated in section 1, in a federated system, we
have to distinguish between local and global events.
We want to de�ne three parameters serving the classi-
�cation of di�erent rule execution scenarios in an active



DBMS libraries:

Sybase, Informix
Mediator Generator

Server Source Code

TemplateServer

generated
class library

Persistence

Object Model File

Connection

Map File

RPC Source Code

RPC Generator

Specification
XDR Protocol

CC

C++ Compiler

ROM library
Persistence

Object Model Parser

Mediator Generator

Preprocessor

RIG

Persistance

Server.C.tmpl

*.persist *.connmap

exec_dml.x.tmpl

Template
XDR Protocol

rpcgen

exec_dml_xdr.c

exec_dml_svc.c

Server

exec_dml.x
Server.C

libpsclass.a

Figure 5. Overview of the Mediator Generation Process (Programs, Files and Libraries

federated system. To do this, we take database events
as an example.

(a) Events may have a local or a global origin or
mode of submission, which can be through the
local API or the global C++ interface, depen-
dent on the user who caused the event.

(b) The scope of database operations may be lim-
ited to a single database or to multiple databa-
ses. With respect to our object-relational sys-
tem, a DML operation may be executed as a
SQL command only at the local API (local scope)
or as method call in the Persistence-based sys-
tem (global scope), regardless of the origin of the
event. In the presence of a database gateway,
locally submitted statements can be directed to
the global system to avoid the existence of real
local operations unknown to the global system
that controls everything.

(c) The events may be recorded in a server event log
independently from the kind of application or
user. That presupposes the existence of a gate-
way component on top of the database server
recording each incoming statement in the event
history. In case of statements with global scope
the gateway functionality is restricted to logging
as sketched in section 2.3.

Example: local event origin, global scope, with
server event log
A table Person(name,nickname,age) is given. A lo-
cal user wants to delete all tuples matching the pred-
icate "age > 30". Using the local SQL interface,
the user issues the command DELETE FROM Per-
son WHERE age > 30, i.e. the origin of the com-
mand is local. Because we assumed a global scope,
the gateway does not forward the statement immedi-
ately to the local database server, but to the medi-
ator process, where it is translated to a sequence of
Persistence C++ method calls, and executed against
the local database server or the surrounding gateway.
That means, the class method of the equivalent class
Person :: querySQLWhere("age > 30") returns a set
of Person instances matching the WHERE clause. Sub-
sequently, on each retrieved object in the set, the re-
move method is called which actually deletes the ob-
ject from the relational database. If it was de�ned in
the gateway con�guration, server log tables are writ-
ten, namely the statement log table and the table
Person Log with all deleted tuples (cf. section 2.3).
Table 5 gives an overview of combinations that are con-
ceivable in our object-relational system.



Table 5. Event Handling in a Heterogeneous
System

a) origin/mode b) scope c) server event log
of submission

local local no
local local yes
local global no
local global yes
global global no
global global yes

8 Conclusions

The presented solution is a promising approach to
combine features of multidatabase systems and active
database systems when integrating multiple relational
databases. The mediator processes that can be gener-
ated due to our algorithms are each speci�c to a certain
multidatabase schema. Enhancing the mediator with
rule management components allows to express more
complex consistency requirements.

On the other side, the local systems's willingness
to make local operations available to the federation
is one of the main prerequisites in order to guarantee
global constraints with a high quality. The gateway
we have presented is tailorable with respect to consis-
tency or performance requirements. First performance
measurements showed encouraging results, a signi�cant
performance loss only occurs if the local log facility is
activated, otherwise the response time delay when in-
corporating the mediation system is negligible. There-
fore, the con�guration can be determined dependent
on the desired functionality and performance needs.
For example, the monitoring or logging is restrictable
to certain tables of global relevance. Thus, deviations
from a globally consistent state may be tolerated if the
events can be reconstructed later using the gateway's
log. Hence, we believe that, due to its exibility in the
con�guration of the gateway and the mediator, our ap-
proach can be used as a practical platform to explore
the tradeo� of local autonomy and the enforcement of
global constraints.

Acknowledgements

The authors are grateful to Persistence Software, Inc.
for providing a license of the Persistence system and to
Reinhold Krayer who implemented the database gate-
way as a part of his Masters Thesis.

References

[1] R.M. Alzahrani, M.A. Qutaishat, N.J. Fiddian, W.A.
Gray; Integrity Merging in an Object-Oriented Feder-
ated Database Environment, in: 15th British National
Conf. on Databases, 1995.

[2] A. Buchmann; Modelling Heterogeneous Systems as a
Space of Active Objects, in: Proc. 4th Intl. Workshop
on Persistent Objects, Martha's Vineyard, Sept. 1990.

[3] H. Branding, A. Buchmann, T. Kudrass, J. Zimmer-
mann; Rules in an Open System: The REACH Rule
System, in: Proceedings of the First International
Workshop on Rules in Database Systems, Edinburgh,
1993.

[4] A. Buchmann, J. Zimmermann, J.A. Blakeley, D.L.
Wells; Building an Integrated Active OODBMS: Re-
quirements, Architecture and Design Decisions, in:
Proc. 11th Internat. Conference on Data Engineering,
Taipeh, 1995

[5] R. Cattell (ed.); The Object Database Standard:
ODMG-93, Morgan Kaufmann, 1993.

[6] S. Ceri, J. Widom; Managing Semantic Heterogeneity
with Production Rules and Persistent Queues, in: Pro-
ceedings of the 19th International VLDB Conference,
1993.

[7] S. Ceri, P. Fraternali, S. Paraboschi, L. Branca; Ac-
tive Rule Management in Chimera, in: J. Widom,
S. Ceri (eds.): Active Database Systems: Triggers
and Rules For Advanced Database Processing, Mor-
gan Kaufmann, 1996.

[8] M. Castellanos, T. Kudrass, F. Saltor, M. Garcia-
Solaco; Interdatabase Existence Dependencies: A
Metaclass Approach, in: Proc. of the Internat. Con-
ference on Parallel and Distributed Databases (PDIS),
Austin, 1994.

[9] S. Chakravarthy, V. Krishnaprasad, Z. Tamizud-
din, R.H. Baddani; ECA Rule Integration into an
OODBMS: Architecture and Implementation, in: Pro-
ceedings of the 11th Internat. Conference on Data En-
gineering, Taipeh, 1995.

[10] C. Collet, T. Coupaye, T. Svensen; NAOS - E�-
cient and Modular Reactive Capabilities in an Object-
Oriented Database System, in: Proceedings of the
20th International Conference on Very Large Data-
bases (VLDB), Santiago, Chile, 1994.

[11] U. Dayal; Active Database Management Systems, in:
Proc. of the 3rd Internat. Conference on Data and
Knowledge Bases, Jerusalem, 1988.



[12] S. Gatziu, K.R. Dittrich; Events in an Active Object-
Oriented Database System, in: Proceedings of the 1st
Internat. Workshop on Rules in Database Systems
(RIDS'93), Edinburgh, 1994.

[13] N.H. Gehani, H.V. Jagadish; Ode as an Active
Database: Constraints and Triggers, in: Proc. of the
17th Internat. Conference on Very Large Databases
(VLDB), Barcelona, 1991.

[14] B. K�ahler, O. Risnes; Extended Logging for Database
Snapshot Refresh, in: Proc. of the 13th Interna-
tional Conference on Very Large Data Bases (VLDB),
Brighton, 1987.

[15] A. Keller, R. Jensen, S. Agarwal; Enabling the Integra-
tion of Object Applications with Relational Databases,
Persistence Technical Overview, Persistence Software,
Inc., 1994.

[16] R. Krayer; Entwicklung eines relationalen Datenbank-
Gateways zur Unterst�utzung globaler Konsistenzkon-
trolle (Development of a Relational Database Gateway
to Support Global Consistency Control),Masters The-
sis (in German), Tech. Univ. Darmstadt, Dept. of CS,
1995.

[17] Q. Li, D. McLeod; Managing Interdependencies among
Objects in Federated Databases, in: Proc. of the DS-5
Semantics on Interoperable Database Systems, Lorne,
Australia, 1992.

[18] A. Loew; Evaluierung des Datenbank-Integrationstools
Persistence and Erprobung als aktives Vermittlersys-
tem (Evaluation of the Database Integration Tool Per-
sistence and Usage in an Active Mediation System),
Masters Thesis (in German), Tech. Univ. Darmstadt,
Dept. of CS, 1995.

[19] S.E. Madnick; From VLDB to VMLDB (Very Many
Large Databases): Dealing With Large Scale Semantic
Heterogeneity, Proc. of the 21st International Confer-
ence on Very Large Data Bases (VLDB), Zurich, 1995.

[20] Persistence Software, Inc.; Persistence User Manual
for Release 2.3, 10/94.

[21] A. Sheth, J.A. Larson; Federated Database Systems for
Managing Distributed Heterogeneous and Autonomous
Databases, ACM Computing Surveys 22(1990), 3.

[22] A. Sheth, M. Rusinkiewicz; Management of Inter-
dependent Data: Specifying Dependency and Consis-
tency Requirements, Proc. Workshop on Management
of Replicated Data, Houston, 1990.

[23] Subtleware Database Technology Connectivity,WWW
page: http://world.std.com/ subtle/info.html, Subtle
Software, Inc., 1995.

[24] UniSQL's Object-Relational Data Management Tech-
nology, Enterprise Reengineering Product Pro�le, The
Bowen Group, Ferndale, WA, 1995.

[25] K. Vanapipat, N. Pissinou, V. Raghavan; A Dy-
namic Framework to Actively Support Interoperability
in Multidatabase Systems, in: Proc. of the 5th Inter-
nat. RIDE-Workshop on Distributed Object Manage-
ment, 1995.

[26] G. Wiederhold; Mediators in the Architecture of Fu-
ture Information Systems; IEEE Computer March `92.

[27] P. Winsberg; Legacy Code: Don't Bag It, Wrap It, in:
Datamation, May, 1995.

[28] Y. Zhuge, H. Garcia-Molina, J. Hammer, J. Widom;
View Maintenance in a Warehousing Environment, in:
Proceedings SIGMOD Internat. Conference on Man-
agement of Data, San Jose, 1995.


