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Abstract

Location is a key information for context-aware systems.
While coarse-grained indoor location estimates may be ob-
tained quite easily (e.g. based on WiFi or GSM), finer-
grained estimates typically require additional infrastructure
(e.g. ultrasound). This work explores an approach to esti-
mate significant places, e.g., at the fridge, with no addi-
tional setup or infrastructure. We use a pocket-based iner-
tial measurement sensor, which can be found in many recent
phones. We analyze how the spatial layout such as geo-
graphic orientation of buildings, arrangement and type of
furniture can serve as the basis to estimate typical places
in a daily scenario. Initial experiments reveal that our ap-
proach can detect fine-grained locations without relying on
any infrastructure or additional devices.

1. Introduction
Location has been identified as a key component for

context-aware systems [3] and may enable a variety of ap-
plications [7, 13]. WiFi fingerprinting might be used to
obtain a coarse-grained location estimate (10’s of meters).
Finer-grained estimates (10’s of cm) can be obtained, e.g.
by ultrasound [10], but require additional and expensive
sensors. On the other hand dead reckoning does not re-
quire any infrastructure. Observing walking direction and
speed through inertial measurement, the relative displace-
ment from a starting point can be estimated. With special
sensor placement at the foot, the error can be reduced to less
than 1% of the distance travelled [4].

Using more convenient sensor placements such as the
pocket or the belt others estimate the walking direction [5]
for dead reckoning [11] and detect re-visited location coor-
dinates [6]. However, the inherent limitation of these ap-
proaches is the accumulation of errors over time. This typ-
ically results in large estimation errors in scenarios without
absolute location updates as it is often the case when the
user stays within the same environment (such as his apart-
ment) for several hours. Rather than to estimate the user’s
location incrementally we, therefore, explore the use of ab-
solute orientation as well as orientation traces to determine
the location of the user within a certain environment.

In contrast to previous work aiming for geometric or topo-
graphic localization of a user [6, 11], we take a topological
view on location. We are not interested in precise estima-
tion of users’ coordinates, but rather in detecting meaning-
ful places that are routinely visited.

Figure 1. Example of two connected places.

The environmental layout predefines potential places that
we can reside in. The layout of buildings, the arrangement
and type of furniture or significant landmarks (such as bill-
boards) structure the space in which we are active. The fac-
ing direction of a person as characteristic for location has
been mentioned [1], but not analyzed before. For example,
when a person is sitting at her working desk she typically
faces a certain orientation (red mark in Fig. 1). Likewise
transiting between different places is characterized by a spe-
cific orientation trace [2] as our movements are constrained
by walls, doors, stairs, etc. The blue arrow in Fig. 1 illus-
trates a place transition characterized by a sequence of ori-
entation changes. The user first turns to the right at the door,
passes the door and turns left, followed by several other
turns until he reaches the vending machine. Using human
orientation seems intuitively promising for place detection
and thus location estimation.

In this work we present a method to detect places from a
continuous stream of data with no additional requirements
for current-generation phones. Placing an inertial sensor
into the pocket, data is collected, segmented and classified.
We collected data from two typical scenarios: at home and
at work. These include typical everyday places and tran-
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sitions between such places. We show that orientation can
indeed be used to discriminate between places. Combin-
ing orientation and orientation traces when changing places
improves place detection.

2. Detecting significant places
The space which we navigate through is naturally con-

strained by our environment. We propose a place recog-
nition system that is based on two main characteristics: (I)
static orientation while at a place and (II) orientation traces
while transiting between places. Based on these character-
istics we formulate the following research question:
• Can environmental constraints be used for detecting

significant places of the user?

Our approach consists of four steps. First, we segment the
continuous data stream into static segments, assuming the
user resides (sitting or standing) at a place Pi and into in-
transit segments, assuming the user changes his place Pi

(by walking or using stairs) to another place Pj . In a sec-
ond step we train a classifier based on the orientation of the
user in order to classify static segments into a known set of
places. In third step, we classify in-transit segments based
on the orientation trace from known transitions. In a last
step, we finally combine the detectors for static places and
place transitions to estimate significant places jointly.

Segmentation. According to Mathie et al. [8] we assume
that the variance of the acceleration over a window is a
suited cue for estimating walking motion. We evaluated
different thresholds and set the threshold in favor of gain-
ing an over-segmentation. Note, that an over-segmentation
can be handled easier than merged segments. Such interrup-
tions can also occur naturally, for example by having a short
chat with a colleague on the corridor. To handle the over-
segmentation, we do a pairwise combination of all segments
similar to Zinnen et al. [14] and obtain overlapping poten-
tial in-transit segments (see Fig 2). In the later transition
classification task, we perform non-maximum-supression
by choosing the segment with highest score.

in transit
static

Ground truth segmentation

Segmentation and pairwise combination

Figure 2. Top: ground truth segments. Bottom: ob-
tained segmentation by thresholding the acceleration
variance and pairwise combined segments.

Place detection using static orientation. Given static
segments and global 3D-orientation we train a naı̈ve Bayes
classifier. Given place labels, mean and variance are cal-
culated for each orientation entry to fit a Gaussian model
P (x) = N (x, µ, σ). The Gaussians are then combined in

naı̈ve Bayes fashion. Samples of unknown static segments
can then be classified into the place with maximum likeli-
hood.
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Figure 3. Example of two instances of equal transi-
tions (blue and red) and a third different transition
(green). Left: accumulated displacement estimate.
Right: orientation trace as feather plot.

Detecting place transitions. Given in-transit segments,
a sequence of orientations (or turns) is given. Previous
work accumulates this sequence and estimates a transi-
tion’s displacement to a relative starting point [6]. Given
a set of known transitions, a nearest neighbor classifier on
the displacement’s coordinates is used to assign the clos-
est known transition. However, we observed that using
displacement coordinates only can be error prone as illus-
trated in Fig. 3. Given a relative starting point, the transition
(colleague→lab) results in a lower distance to the transition
(lab→toilet) than a second instance of (lab→toilet).

In contrast to [6] we therefore use the complete orientation
trace. Then similarity between instances of (lab→toilet)
and dissimilarity (colleague→lab) becomes more evident
(Fig. 3, right) than using displacement coordinates only.

Changes in walking speeds or path variation, e.g., by col-
lision avoidance with other persons or opening doors do
not allow place transitions to be exactly reproduced. Dy-
namic Time Warping (DTW) [9] offers an excellent simi-
larity measurement that accounts for such variability in the
signal. For the warping function we use a p = 0 symmet-
ric slope constraint. Given the similarity measurement of
the DTW we use kNN-classification to assign an unknown
place transition to known transition classes.

Combined place detection. Given topological informa-
tion in terms of connected places, we can use informa-
tion of originating places, transitions and destination places
jointly. We implement a simple voting-algorithm. First we
replace the kNN-assignment of the place transitions with a
soft assignment to obtain scores. We normalize the DTW
distances using a sigmoid function y = 1

1+ea·(x+b) , where
a and b are estimated from training data. We use a lin-
ear weighting P (place) = α · score(transition) + (1 −
α) · score(place) as voting technique. That means, e.g., if
α = 1 the place detection would be ignored completely and
only the transition detection would be used.
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3. Datasets
In order to analyze whether environmental constraints pro-

vide relevant characteristics for detecting significant places,
we recorded two datasets in typical environments: at work
and at home. The dataset was recorded on three non-
consecutive days, where each place was visited at least
once. In total 20 places with 37 place transitions were
recorded, which corresponds to 4.5-5km of travelled path.
In the office. During a day an office worker visits typical
places such as colleagues, the lab or the cafeteria. In total
we used 10 such places. Theoretically 90 transitions be-
tween these places are possible, but we limited our dataset
to 24 typical transitions. Fig. 4 depicts the places and tran-
sitions.

Office 
desk

Figure 4. Places and place transitions at the office.

At home. As a second dataset, we recorded a typical
evening situation which constitutes 13 transitions between
10 places. Examples of places include being at the fridge,
on the couch or at the dining table. In contrast to the office
dataset (minimum transition time of 17s), place transitions
can be much shorter up to just 2s of total duration, corre-
sponding to about 1 to 1.5m of travelled distance.

Both datasets where recorded continuously and annotated
manually. Additionally we recorded a third dataset contain-
ing irrelevant places outside of the home and the office, for
instance, when walking around in other buildings or down-
town in a shopping area.
3.1 Hardware

For the data collection, we use the Xsens MTx inertial
measurement unit1. Based on fusing 3D-accelerometer, gy-
roscope and magnetometer data, the global orientation of
the sensor is estimated. The sampling rate is set to 120Hz.
We equipped the sensor with a bluetooth module and a bat-
tery, both worn in the right pocket. A belt-attached smart-
phone was used to collect the data via bluetooth connection.
In this work we assume equal orientation of the sensor. This
marks a limitation to the system, but in combination with re-
calibration methods from, e.g., [2, 5] we expect to relax this
assumption in future work.

4. Experimental results
We present our analysis in three different steps. First, we

visualize the data for static places. Then, we report on a
1http://www.xsens.com

discriminative analysis of place transitions using the seg-
mentation from groundtruth. Finally, we report on the per-
formance of our approach on continuous data.

Figure 5. Examples of global facing direction in the
office (right) and at home (left). Triangles symbolize
sitting and circles standing posture.

Visual inspection of places. Fig. 5 illustrates the facing
direction on a 3D sphere, i.e., the vector originating in the
pocket and pointing to the front. Each color specifies a sig-
nificant place. Note, that we aggregated 3D-orientation to
the facing direction for sitting and standing as triangles and
circles respectively in this visualization only. Since the pos-
ture is reflected in the data we make use of the full 3D-
orientation for the later classification task.

For the home dataset (left), most places separate well, ex-
cept at oven and at supply cabinet. These places face the
same direction and cannot be disambiguated by orientation.
For the office dataset we can observe stronger overlaps be-
tween places. Here at park exit and at toilet have a very
similar orientation, as well as at colleague or at cafeteria.
Interestingly sitting on couch at home or in the office has a
slightly different sitting angle than sitting at the desk. This
is a useful characteristic to disambiguate both places.

Discriminative analysis of place transitions. Fig. 6
shows the DTW-measured similarity between each transi-
tion. The majority can be distinguished well. We can also
see intra-class similarity between class 1 (office→bulletin
board), 16 (lab→office) and 20 (lab→bulletin board). Here
the walking paths contain equal sequences of turns. Despite
of different path lengths, the orientation traces are warped
in length, leading to confusion for paths with similar se-
quences of turns. A more sophisticated warping function
penalizing different trace lengths could distinguish similar
sequences of different lengths. While home and office tran-
sitions can be distinguished using additional context such
as WiFi localization it is worthwhile to note that transitions
within the office do not resemble the transitions at home.

Continuous detection. Fig. 7 shows the results for con-
tinuous detection on both datasets. Using 120Hz we obtain
a mean class precision of about 70% for the office place
detection. Places with similar orientation are confused. At
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Figure 6. Normalized soft assignment of place transi-
tions.

6 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1 .5 .25 .125 1/120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1/sampling rate

 

 

6 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1  .5  .25  .125 1/120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

static
combined 
transitionm

ea
n 

cl
as

s 
pr

ec
is

io
n

m
ea

n 
cl

as
s 

pr
ec

is
io

n

1/sampling rate

Figure 7. Mean class accuracy for place, transition,
and joint place detection.

toilet is frequently confused with at park exit, at cafetaria
or at the colleague. Adding transition information the re-
sults are improved 30% to perfect recognition. As expected
transitions help significantly due to their richer information
and less ambiguity compared to places alone.

At home, we observe nearly 80% for the place detection.
At home, the arrangement of furniture is less uniform than
in the office buildings. The improvement of the joint detec-
tion is lower with about 10%. Here, transitions are shorter
than in the office, and do not contain complex enough in-
formation. This is reflected in the reduction of the sampling
rate. While for the office scenario performance remains rel-
atively stable down to 0.5Hz, performance drops signifi-
cantly with less than 1Hz for the home dataset.

4.1 Discussion
We saw that orientation can be an interesting cue for loca-

tion. The ambiguity between places seems to be less than
expected. Here, the interplay between different conditions
plays a key role. While sitting in an ambiguous orientation
due to uniform building layouts, the properties of furniture
can help to disambiguate. For example the sitting height on
a couch or an offset of a few degrees for the yaw axis, can
lead to different sitting angles (and therefore 3D orientation)
than in an office chair.

Detecting places in the office is slightly worse than for the
home scenario. Probably the uniform building layout and
furniture arrangement make orientation more ambiguous.

Adding transition information to recognize places yields a
significant improvement. The results for the home scenario
seem almost complementary. While the place detection is
better overall, transitions do not contain sufficient infor-
mation to yield a significant improvement. Transitions are
shorter and less complex than in the office scenario.

5. Conclusion and future work
We present a method for detecting significant places in a

continuous data stream. Static orientation in places and ab-
solute orientation traces between places can serve as char-
acteristics for detecting places. Our method does not re-
quire any special hardware and can be applied using recent
phones such as an iPhone 4 worn in the pocket.

Given the promising results we are planning a long-term
multi-user dataset to allow extraction of significant places
using clustering and motif discovery techniques. In another
direction we will explore map matching techniques similar
to work in [12]. The topology can literally be drawn on the
map and reduce or even replace training of the classifier.
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