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ABSTRACT
The architecture and algorithms of database systems have
been built around the properties of existing hardware tech-
nologies. Many such elementary design assumptions are 20–
30 years old. Over the last five years we witness multiple
new I/O technologies (e.g. Flash SSDs, NV-Memories) that
have the potential of changing these assumptions. Some of
the key technological differences to traditional spinning disk
storage are: (i) asymmetric read/write performance; (ii) low
latencies; (iii) fast random reads; (iv) endurance issues.

Cost functions used by traditional database query opti-
mizers are directly influenced by these properties. Most cost
functions estimate the cost of algorithms based on metrics
such as sequential and random I/O costs besides CPU and
memory consumption. These do not account for asymmetry
or high random read and inferior random write performance,
which represents a significant mismatch.

In the present paper we show a new asymmetry-aware
cost model for Flash SSDs with adapted cost functions for
algorithms such as external sort, hash-join, sequential scan,
index scan, etc. It has been implemented in PostgreSQL and
tested with TPC-H. Additionally we describe a tool that
automatically finds good settings for the base coefficients
of cost models. After tuning the configuration of both the
original and the asymmetry-aware cost model with that tool,
the optimizer with the asymmetry-aware cost model selects
faster execution plans for 14 out of the 22 TPC-H queries
(the rest being the same or negligibly worse). We achieve
an overall performance improvement of 48% on SSD.

1. INTRODUCTION
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Database systems, their architecture and algorithms are
built around the I/O properties of the storage. In con-
trast to Hard Disk Drives (HDD), Flash Solid State Disks
(SSD) exhibit fundamentally different characteristics: high
random and sequential throughput, low latency and power
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consumption [3]. SSD throughput is asymmetric in con-
trast to magnetic storage, i.e. reads are significantly faster
than writes. Random writes exhibit low performance, which
also degrades over time. Interestingly enough many of those
properties also apply to other novel I/O technologies such
as NV-Memories [4].

Precise cost estimation for query processing algorithms is
of elementary importance for robust query processing and
predictable database performance. Cost estimation is the
basis for many query optimization approaches. The selection
of the ‘best’ query execution plan correlates directly with
database performance.

Taking hardware properties properly into account is essen-
tial for cost estimation and query optimization, besides the
consideration of data properties (data distribution, ratios,
access paths) and intra- and inter-query parallelism. Cost
functions were built on assumptions about hardware prop-
erties which are now 20–30 years old. Some of these change
fundamentally with the advent of new I/O technologies.

Due to the symmetric read/write characteristics and the
high random I/O cost of traditional spinning disks, the I/O
behavior is approximated by counting sequential and ran-
dom storage accesses and weighting them with different fac-
tors. Flash SSDs as well as other new I/O technologies ex-
hibit: read/write asymmetry (different for sequential and
random I/O); and very good random read performance, i.e.
random and sequential read costs converge. Hence the fol-
lowing factors can yield incorrect cost estimation: (i) not
distinguishing between reads and writes; (ii) not accounting
for random writes; (iii) not accounting for I/O parallelism
and read operations.

In a previous study [1], we found that the optimal plan
to answer a query indeed can depend on the used storage
technology. In the present paper we report about our efforts
to improve query optimization in respect to storage tech-
nologies. We show incremental improvements to the cost
model of the open source DBMS PostgreSQL. The improve-
ments are derived from observable behavior of the query
processing algorithms of that DBMS and are supported by
theoretical considerations. Besides sequential and random
patterns the new model distinguishes reading and writing
making it asymmetry-aware. Additionally a tool based on an
iterative heuristic was built to automatically find good base
coefficients for the configurable parameters of cost models.
To simulate the situation of data-intensive systems under
heavy load the test system was setup with tight memory
settings relative to the size of the data. With tuned param-
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eters the DBMS with the new model is able to perform a
TPC-H derived workload faster than a vanilla PostgreSQL
with equally intensively tuned cost model parameters.

The rest of the paper is organized as follows: after a
discussion of related work (Section 2) we describe the de-
tails of the asymmetry-aware optimizer cost model (Section
3). The adapted cost functions for Sorting and Hash-Join
are presented in Sections 3.3.1 and 3.3.2 respectively. The
asymmetry-aware model is implemented in PostgreSQL1 and
tested with an open source benchmark build around a TPC-
H schema and data [16, 13]. The experimental setup, its
results, and their discussion follows in Section 4.

2. RELATED WORK
Query optimization has been a research topic in database

systems right from the beginning [15]. There has been a
very large body of literature on the topic; some of the survey
works are [8, 2, 7]. All these works provide the basis for the
present paper.

The work by Pelley et al. [14] treats topics similar to the
ones considered in our previous work [1]. Pelley et al. mea-
sure different scan and join algorithms’ performance with
varying query selectivity. Their results show only a small
selectivity range where the optimal algorithm for an HDD is
sub-optimal for an SSD. From that observation they extrap-
olate the generalized conclusion that optimizers do not need
to be made SSD-aware for practical means. Their work also
relates to [6]. In [1] we explored a similar problem setting
but arrived at the conclusion that different query execution
plans are best suited for different hardware. The model pre-
sented in the present paper features additional degrees of
freedom to represent properties of asymmetric storage de-
vices.

3. ASYMMETRY-AWARE COST MODEL
As a basis the open source DBMS PostgreSQL is used.

PostgreSQL features a cost-based query optimizer. Cost
functions in that optimizer calculate frequencies of expected
operations, weight them, and are summed up to a scalar
cost value per alternative plan. The plan which received the
lowest cost value is executed.

3.1 Behavior of the Query Executor
Before discussing PostgreSQL’s cost model and the sug-

gested changes, we briefly introduce the behavior of the
query execution algorithms in this section, while we focus
on the I/O behavior.

3.1.1 Scanners
PostgreSQL features four ways to scan data, which pro-

duce read-only access patterns of different distributions.
The Sequential Scan algorithm implements the “full table

scan”. Disk is accessed in natural order, i.e. sequentially.
The Index Scan algorithm accesses tables indirectly by

looking up the tuples’ locations within an index first. Con-
ditions specified in the query are used to narrow the range
of relevant index and table portions. This may produce
random patterns depending on index-to-table correlations
and/or the order the keys are looked up in a complex plan.

Then there is Bitmap Scan, a variant of Index Scan which
first records all potentially matching locations as a bitmap.

1http://www.postgresql.org

After that only those portions are scanned in on-disk order.
Bitmaps originating from different conditions or different
indexes on the same table can be bit-logically combined prior
to scanning. The amount of randomness induced by this
algorithm depends on the number of holes in the bitmap.

Finally, the Tuple-ID Scan algorithm handles the special
case when tuples are explicitely requested by conditions of
the form “ctid = ...” and “WHERE CURRENT OF” expres-
sions. Its access pattern is unpredictable.

3.1.2 Sorting and Hash Join
The sort and hash-joining algorithms produce mixed write

and read I/O, if their temporary data does not fit in the main
memory slice available to a single algorithm.

PostgreSQL’s sort algorithm is basically an implementa-
tion of a combination of Heap Sort and Polyphase Merge
Sort With Horizontal Distribution, both found in [10]. Its
first partitioning phase produces mainly sequential writes2.
The multiple merge phases tend to produce more randomly
targeted read and write accesses because space occupied
by read pages is directly reused for new sorted runs. The
amount of randomness, however, depends on whether the in-
put data is pre-sorted or not. We will experimentally show
this in Section 3.3.1.

Hash Join in PostgreSQL means Hybrid Hash Join. Hy-
brid Hash Join first splits the data of the inner table into
mulitple batches which can be processed in RAM at a time.
The first batch is held in RAM so it can be processed directly
after splitting. The tuples going to secondary batches are
appended to multiple temporary files, one for each batch, in
parallel. The hash table for each batch is created in mem-
ory when the batch is processed. Tuples of the outer table
whose join field hashes to secodary batches are postponed
and written to temporary files, too. Although the tuples are
strictly appended to the temporary batches, this produces
a lot of random writes as we will experimentally show in
Section 3.3.2.

3.1.3 Materialization and Re-Scanning
If the identical result of an execution plan sub-tree is

needed multiple times by a parent node, it is materialized,
i.e. temporarily stored. If the intermediate result fits in the
memory slice available for an algorithm, it is held in RAM,
otherwise it is stored sequentially to temporary on-disk stor-
age. When the data is used again, it is sequentially streamed
from disk.

3.2 Original Model
PostgreSQL’s cost model is organized parallel to its indi-

vidual query processing algorithms so there is a one-to-one
relationship between algorithms and elementary cost func-
tions. A complete mathematical transcript of the cost model
and its changes can be found in Appendix A. We focus on
the I/O part of the functions as the computational part was
unchanged. Some functions are notated slightly different to
the calculations in the program code and some technical spe-
cialities are left out for easier understanding. In this section
we give an idea of how the shown behavior of the executor
has been translated into a cost model by the PostgreSQL
developers.

2The cost for sourcing the data is accounted using the ap-
propriate formulas respective to the sourcing plan.
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The distinction of I/O access patterns is implemented as
configurable weight factors. As of writing PostgreSQL’s cost
model accounts for sequential and random accesses using two
different factors.

The cost functions for the scan algorithms estimate the
number of pages to be read for the different tasks within the
algorithms. These numbers are multiplied with one of the
two configurable weight factors depending on whether the
respective operations are expected to produce sequential or
random accesses. For Sequential Scan the model multiplies
the number of pages of the scanned relation with the factor
for sequential accesses; for Index Scan sophisticated compu-
tations are performed to convert the estimated selectivity
and a statistics value about the index-to-table correlation
into the number of required page reads and a fraction for
the randomness of these accesses; for Bitmap Scan the num-
ber of holes which would lead to skips is approximated based
on the selectivity, i.e. small result fractions are assumed to
produce more random accesses; the unpredictability of the
Tuple-ID Scan algorithm is treated by the worst case as-
sumption: every tuple expected to be accessed is counted as
a random page read; and, finally, re-scanning a previously
materialized intermediate result is counted by multiplying
the expected size with the parameter for sequential accesses.
Interestingly, the same cost formula models the materializa-
tion itself.

The I/O cost of a sort operation is modeled by a typical
O(n logn) formula. The number of input pages times 2 (for
write and read) is multiplied with the expected number of
sort phases, which is the logarithm to base of the merge
order3 of the number of expected intial sorted runs. This
estimates the total number of page accesses, which is then
weighted with 3

4
sequential and 1

4
random.

The I/O cost for writing and further processing of addi-
tional external batches of data in the Hash Join algorithm
is accounted by multiplying two times the relevant data size
with the parameter for sequential accesses.

3.3 Modifications
The proposed asymmetric cost model provides four config-

uration parameters regarding I/O instead of only two. These
allow to distinguish not only sequential and random oper-
ations but also whether data is read or written. Each of
the old parameters is split into a parameter representing
read operations of the given access pattern and another pa-
rameter that represents write operations performed with the
same pattern. In the cost functions the old parameters are
replaced with the new ones according to the behavior of
the algorithms. For easier comparison we restrict our model
modifications to parameter replacements which allow us to
reproduce the cost values of the old model by the new model
using certain parameter settings.

The scanners perform pure read loads while materializa-
tion performs a pure write load; however, in both cases the
associated cost functions can be converted to the new pa-
rameter set by substituting old parameter variables with new
ones: “sequential read” and “random read” instead of just
“sequential” and “random” for the scanners and “sequential
write” instead of “sequential” for materialization.

The cost functions for the sort and hashjoin algorithms
need more attention because their algorithms perform read

3The implementable merge order depends on the memory
slice available to the algorithm.

loads as well as write loads while their original cost functions
do not model those loads separately. Sections 3.3.1 and 3.3.2
will show in-detail how this was resolved.

3.3.1 Adapted cost function for sort
As we focus on the parts of the cost functions representing

storage accesses we will look at the external sort only.
The original cost function for this algorithm assumed 1

4
of

the block accesses as random and 3
4

as sequential, together
representing all the reads and writes happening for this ex-
ternal sort. It is obvious that everything that is written
to the temporary storage is read later again. Therefore we
assume that half of the accesses were originally counted as
reads and the other half as writes.

To get a realistic assigment for the random-to-sequential
ratio, we traced the requests on the block layer of the oper-
ating system using blktrace4. This revealed the first line of
the statistics shown in Table 1 for an external sort by the
l_partkey column of the LINEITEM table of a TPC-H data
set. In these statistics, a request is counted as sequential, if
its start address is immediately following the end address of
the preceding request.

Often query plans include sort operations carried out on
data that is already stored in the requested order. The sec-
ond row of Table 1, therefore, shows the statistics for a sort
of the LINEITEM table by l_orderkey. In freshly loaded
data, the LINEITEM table physically contains monoton-
ically ascending order keys. Sorting by that column the
shares of sequential and random operations exchange. Where
the sorting of unordered data showed a high random share,
there is now a high sequential share. We conclude, there is
a high data dependency for the sort algorithm. As a com-
promise we assume that 1

2
of the requests are sequential

and 1
2

are random. However, we count the first partition-
ing phase as only sequential writes, because in that phase
the algorithm appends all new sorted runs to the end of the
temporary file only.

Sorting in a join context.
A single execution of TPC-H query number 12 reveals

the third line of Table 1 when it is answered using a sort-
merge join with external sort. These numbers are similar to
the ordered case above, and indeed, the main data portion
that is sorted here is already ordered on disk. Only the
smaller table (ORDERS) involved in the join really needs
the sort operation while the other bigger table (LINEITEM)
is already stored physically in the requested order. This
further supports the assumptions we made for the simple
sort case.

3.3.2 Adapted Cost Function for HashJoin
A second algorithm featuring mixed read and write oper-

ations is the Hash Join algorithm.
To determine the cost function for the hashjoin algorithm

we conducted block tracing experiments very similar to the
ones we did for the sort algorithm. The join from TPC-H
query number 12 performed with PostgreSQL’s hash join
algorithm shows access patterns which can be summarized
to the statistics shown in line four of Table 1. These numbers
show a strong random write tendency and a fair sequential
read tendency.

4http://git.kernel.dk/?p=blktrace.git
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Table 1: Temporary I/O Access Patterns

write read

sequential random sequential random

external sort of unordered data 30.42% 69.57% 5.47% 94.52%
external sort of ordered data 77.15% 22.84% 95.89% 4.10%
sort-merge join 75.40% 24.59% 91.71% 8.28%
hash join 5.61% 94.38% 71.40% 28.59%

So partitioning produces random writes mostly. This can
be explained as the filesystem (ext3) keeps the temporary
batch files separated from each other by pre-allocation of
space. This way individual batches are stored mainly con-
secutive, what in turn explains why reading them produces
sequential reads most of the time.

As an approximation we therefore treat all read operations
in the join phase as sequential accesses. The writes in the
partitioning phase we treat as random as clearly indicated
by the statistics. The resulting typical O(n + m) formula is
shown in the appendix.

4. EXPERIMENTAL ANALYSIS
In this section we will present the experiments we con-

ducted to show the efficiency of the new model. In Section
4.1 we will define the system configuration and the used
benchmark. Section 4.2 will illustrate the way we compare
the different models. The results of the experiments are
presented in Section 4.3 and discussed in Section 4.4.

4.1 System and load
For our experiments we used two identical computer sys-

tems. One of them was dedicated to a PostgreSQL instal-
lation using the modified cost model, while the other was
installed with a vanilla PostgreSQL for reference. The used
base version of PostgreSQL was 9.0.1. The systems were
equipped with 1GB of main memory, a common 7200RPM
hard disk for operating system and DBMS software, and
a 64GB Intel X25-E SSD on which a partition of 40GB
contained the database data including temporary files. Ini-
tially PostgreSQL was configured with pgtune5 using the
datawarehousing profile with up to 30 sessions (required for
loading the data).

As workload we used the DBT-3 benchmark, which is an
open source implementation of the TPC-H specification [16].
It is not validated by the Transaction Processing Perfor-
mance Council (TPC), so its results are not guarranteed
to be comparable with validated TPC-H results. For the
purposes of our experimental analysis the benchmark’s well-
defined schema and data set, as well as the standardized set
of queries suffice. TPC-H models a data warehousing or de-
cision support scenario, so most of the queries are highly
demanding. We partially modified the original benchmark
control scripts to fit the needs of our testing procedure.

Data was generated for scale factor 5. That is about 5 GB
raw data. When loaded into the PostgreSQL database this
inflates to about 13 GB through the addition of indexes and
statistics. So less than 10% of that database fits in memory,
which is a typical ratio in large scale analytical systems. We
used the default page size of 8KB.

5http://pgfoundry.org/projects/pgtune

As performance metric we use the sum of the execution
times of the benchmark’s read only queries. However, we
exclude the time to process query 15, because it contains a
view creation, for which PostgreSQL cannot output a plan
description, which is needed for our optimization. This sum
of the 21 execution times will be called “total time” in the
rest of the paper. We do not use TPC-H’s original geometric
mean based metric, because it is not suitable for speed-up
calculation and generally harder to compare (see also [5]).

4.2 Calibration
The new cost model provides an extended set of config-

urable coefficients within its functions. A fair way to demon-
strate the improved configurability and its positive impact
on the processing performance is to test both models with
their individual optimal configuration. Unfortunately, the
optimal parameter settings cannot be computed analytically
because they depend on algorithmic operations as well as on
unknown operating system and hardware properties. Addi-
tionally, there is also a virtually infinite space in which the
settings have to be found, so an exhaustive evaluation is im-
possible, too. To still find very good settings for both mod-
els, we used a heuristic based on simulated annealing [9]. We
instructed that search algorithm to find the configuration
that minimizes the “total time” of the DBT-3 benchmark.

The implemented search algorithm repeatedly changes the
configuration settings and runs the load; it observes a re-
sponse time, and if that is lower than the previous current
execution time, it accepts the new settings; if the new re-
sponse time is higher it randomly chooses whether to accept
it nevertheless or discard it. The probability for the accep-
tance of an inferior setting decreases over time as well as the
average strength of setting modification. To prevent the al-
gorithm from getting caught in a non-global local optimum,
the modification strength level and acceptance probability
is reset after a fixed number of iterations and the algorithm
starts again with the currently best known settings while
having the chance to escape it with a big step. Figure 3 in
the appendix shows the parameter settings as they vary over
time and the corresponding total execution time for the first
cycles of calibration. The repeated increase of variance in
the curves is caused by the mentioned restarts. Modification
of the configuration settings is performed by multiplication
with a logarithmic normal-distributed random variable to
respect the totally different magnitudes of the parameter
values and to prevent autonomous drift.

For the final comparison of the models we executed the
benchmark with 25 varying random seeds different from the
seed used for calibration. The seed value essentially modi-
fies the selectivity of the queries and sub-queries. Therefore
the optimizer may consider different plans as being the op-
timal strategy to answer the given query templates. The

http://pgfoundry.org/projects/pgtune
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Figure 1: Total execution time of DBT-3 benchmark (excluding query 15) [orig = original model, default = ini-
tial pgtune’d configuration, acm = new asymmetric cost model, pgcalib = calibrated configuration that de-
livered minimal totaltime for a given model and the workload]. Different random seeds lead to different
selectivities of the qualifications in the queries.

same 25 seeds are used to test (i) the original model with
our data warehousing default configuration (‘orig default’),
(ii) the calibrated original model (‘orig pgcalib’), (iii) the
modified new model with a default configuration contain-
ing a converted set of the original weight factor settings
(‘acm default’), and (iv) the new model with calibrated pa-
rameter settings (‘acm pgcalib’).

4.3 Results
Figure 1 shows the total execution time for the different

seeds, settings, and models. Finer grained information is
shown in Figure 2 compares only the two calibrated con-
figurations and shows the geometric mean of the speed-ups
each query template received.

4.4 Discussion
From the chart in Figure 1 it is easily visible that the

calibrated models both perform better than the same mod-
els with their initial (“default”) configuration. Furthermore,
the system with the calibrated new asymmetric cost model
(“acm”) completes the benchmark in even less time. There
is a single case where the system with the new model seems
to be a little bit slower and there are three additional peaks
where the difference is not as prominent. Wilcoxon-Mann-
Whitney’s U-test [17, 12] computes a very very low probabil-
ity (0.00001788%) that the results of both calibrated mod-
els might originate from the same distribution. The uncali-
brated models, however, look very congruent and for these
numbers the U-test delivers a probability of 20.99%. So one
can not refute that they originate from the same distribution
with a typical significance level of 5%.

The speed-up values seen in Figure 2 show that 14 out of
21 tested individual queries receive a positive speed-up while
the performance of the others is only a litte bit decreased.
The speed-up for the various query templates is very non-
uniform. While query 21 gains more than 500% speed-up
there are a lot of queries with much lower speed-up values

and even one query whose speed is now 4% lower. Of the
21 queries (Q15 is excluded, see above), there are 10 queries
that gain at least 5%. The average speed-up with respect to
the total execution time of the 21 queries is 48%.

We did an in depth analysis of query 21 which had the
highest relative speed-up and query 9 whose runtime dif-
ference was the biggest. Their detailed timing data reveals
that in both cases the faster plan is doing index-nested-loop
joins where the join attribute values change in the same
order as the corresponding tuples are stored in the index-
accessed table of the inner plan tree. In such a case the in-
dex scan results in sequential storage accesses. Although the
slower plans used the same index, the join attribute values
do not change in table order. In this case storage accesses
are randomized what results in a reduced cache-hit rate. So
the faster plan exploits a data-dependent inter-table cor-
relation. Problematically, such inter-table correlations are
not respected in PostgreSQL’s optimizer at all. It only ac-
counts for index-to-table correlations which are only relevant
for range scans. Other reasons for speed-up are much less
prominent or are hard to grasp because of unstable plan
choices. Clearly device related reasons are thus hidden and
it may be possible that the additional degrees of freedom
got abused to compensate general optimizer deficiencies.

We performed a quick cross check on common HDDs. In a
very time constrained experiment comprising only one cool-
ing cycle of 100 iterations the calibration could not provoke
a significant speed-up difference between the two models.
With calibrated settings both systems perform the bench-
mark about 120% faster than with default settings. How-
ever, using the calibrated settings originally obtained for the
SSDs, query 21 runs about 25 times faster (280s instead of
7227s) indicating that the optimal parameters for the HDDs
were not found during this short calibration. With the same
settings the whole benchmark is performed in 11895s using
the old model and in 4975s using the new model – in both
cases faster than with the quickly calibrated settings.
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Figure 2: Speed-up from optimized old model to optimized new model per TPC-H query. [black = system
with new model performs better, gray = system with old model performs better]

5. CONCLUSION
We presented a new cost model for PostgreSQL’s cost-

based query optimizer that distinguishes read and write op-
erations. From our experimental results we conclude that
this model can indeed deliver a higher performance if its
weight parameters are configured to reflect the system and
data properties. A tool was built and described that auto-
mates the configuration process.

We see significant performance improvements of an ap-
plication class benchmark using the new model with cali-
brated parameters. However, we cannot relate the concrete
plan changes observed in the experiments conducted so far
to original SSD properties. The additional degrees of free-
dom available in the new model may be even useful to bet-
ter tune the optimizer on systems based on common hard
disks. With a simpler workload like the ones used in [1, 14]
containing only data-dependencies respected by the used op-
timizer there might be a chance to explicitely demonstrate
asymmetry-awareness. Such experiments are planned as a
future work.
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APPENDIX
A. TRANSCRIPT OF COST MODEL

This appendix contains a mathematical transcript of the
cost model. These formulas are not required to understand
the presented work as there are enough explanations in the
main matter. Nevertheless, we include them for complete-
ness or a brief overview. Table 2 displays the meaning of
the used mathematical symbols.

Table 2: Notation

notation meaning

cio compound cost value for I/O operations
ĉio compound I/O cost specific to index type
cs cost weight factor for sequential accesses
cr cost weight factor for random accesses
csw cost weight factor for sequential page writes
crw cost weight factor for random page writes
csr cost weight factor for sequential page reads
crr cost weight factor for random page reads
ċcpu CPU cost for loading a single tuple
˙̂ccpu additional CPU cost for index based acceses
cop CPU cost for applying an operator
e total cache available to database
‖·‖t number of tuples in an object
‖·‖p number of pages required to store an object

‖·‖l number of entries in the argument array
R all physical tables of database
R base relation associated with algorithm
O sibling outer relation in a nested loop join
Pi relation produced by the inner deeper path
Po relation produced by the outer deeper path
S to be sorted data
r̂ correlation coefficient of index to table
ŝ selectivity of index associated quals
ŝB selectivity of index boundary quals
m the merge order of the polyphase merge sort
n the expected number of initial sorted runs

variable names shown in bold face are user configurable

For sequential scan, index scan, bitmap scan, tuple-ID
scan, and materialization we show only the formulas of the
original model and a replacement map (Table 3) because
these formulas do not change structurally, i.e. only symbol
names change. For sort and hash join contrarily we will
show both, the old and the new function, at length.

Table 3: Parameter replacements in cost functions

function original new affected equations

seqscan cs csr (1)
indexscan cs csr (4)

cr crr (3), (4), (16)
bitmapscan cs csr (13)

cr crr (13), (16)
tidscan cr crr (25)
material cs csw (31)
rescan cs csr (32)
sort more complex, see Section 3.3.1

hashjoin more complex, see Section 3.3.2

A.1 Sequential Scan
Cost of a sequential scan is trivial: sequential page (read)

cost times number of pages.

cio(seqscan) = cs ‖R‖p (1)

A.2 Index Scan
I/O cost of the index scan is calculated by a rather com-

plex system of formulas. Trivially speaking, they interpolate
between the sequential and random cost factors based on se-
lectivity and index-to-table order correlation.

cio(indexscan) = ĉio + cio + r̂2 (cio − cio) (2)

cio = cr · p̂(iot) · i−1
o (3)

cio =

cr · p̂
(
dioŝ ‖R‖pe

)
· i−1

o if io > 1

cr + cs ·
(
dŝ ‖R‖pe − 1

)
else

(4)

t = round
(
max

(
1.0, ŝ ‖R‖t

))
(5)

io = max
(
‖O‖t , 1

)
(6)

To estimate the number of page fetches required for the
index scan the function rooted at Equation (7) from [11] is
used. (In the original paper p̂ is named YAPP . PostgreSQL
replaces the product Dx by tuples_fetched which is t in
our symbol symbol system.)

p̂(t) =


min

(
pt, ‖R‖p

)
if ‖R‖p ≤ eR

pt else if t ≤ pe

eR + (t− pe)
‖R‖p−eR
‖R‖p

else

(7)

pt =
2 ‖R‖p t

2 ‖R‖p + t
(8)

pe =
2 ‖R‖p eR

2 ‖R‖p − eR
(9)

eR = e ·
‖R‖p

‖R‖p + ‖I‖p
(10)

A.3 Bitmap (Index) Scan
The I/O cost function of the bitmap (index) scan treats

off the random and sequential factors based on the fraction
of pages estimated to be needed from the relation. The
function p̂(·) from Equation (7) is reused in this context.

cio(bitmapscan) =

startup︷︸︸︷
ĉio +pc′ (11)

p =

min

(
p̂(t‖O‖t)
‖O‖t

, pR

)
if ‖O‖t > 1

min
(

2pRt
2pR+t

, pR
)

else
(12)

c′ =

{
cr − (cr − cs)

√
p
pR

if p ≥ 2

cr else
(13)

pR = max
(
‖R‖p , 1

)
(14)

t = round
(
max

(
1.0, ŝ ‖R‖t

))
(15)



A.4 General B+-Tree Functions
PostgreSQL supports different kinds of index structures.

Therefore the cost functions for both index based algorithms
call an abstract function to calculate the cost for access-
ing only the index structures. In the used version of Post-
greSQL, all included index types base their cost function on
a generic index cost function. Therefore we only present a
cost function for the default B+-tree index as it contains
everything relevant for the other types of index, too.

ĉio =

{
pcr
io

if i > 1

pIcr else
+ pI

cr

100000
(16)

io = max
(
‖O‖t , 1

)
(17)

i = isa · io (18)

isa =
∏

a∈Q̂sa

‖a‖l (19)

Q̂sa := {q ∈ Q̂ | q is a scalar array operator} (20)

pI =

{⌈
tI
‖I‖p
‖I‖t

⌉
if ‖I‖p > 1 ∧ ‖I‖t > 1

1 else
(21)

tI =


1

if uniqe index ∧
only ‘=’ quals ∧
no scalar array op ∧
no null test

round
(
ŝB
‖R‖t
isa,B

)
else

(22)

isa,B =
∏

a∈Q̂sa,B

‖a‖l (23)

Q̂sa,B := {q ∈ Q̂sa | q is an index boundary qual} (24)

A.5 Tuple-ID Scan
The cost function for tuple-ID scan counts for every tuple

access one page access. However, if it is combined with a
“scalar array operator”, e.g. an “in (...)” expression, then it
counts a page access for every array entry.

cio(tidscan) = tcr (25)

t =
∑
q∈Q


‖q‖l if q ∈ Qsa

1 if q ∈ Qco ∪Qctid

0 else

(26)

Q : all quals associated to the tidscan (27)

Qsa := {q ∈ Q | q is a scalar array qual} (28)

Qco := {q ∈ Q | q is a ’current of’ expr} (29)

Qctid := {q ∈ Q | q is a ’ctid = ...’ expr} (30)

A.6 Materialization and Re-Scan
Writing out an intermediate result and re-reading it from

disk is counted with the same formula in the original model.
However, after applying the replacements from Table 3 ma-
terialization uses the “sequential write” factor while re-scan
uses the “sequential read” factor.

cio(material) = ‖Pi‖p cs (31)

cio(rescan) = ‖Pi‖p cs (32)

A.7 Sort
The I/O cost of PostgreSQL’s external sort is computed

by a typical O(n logn) formula. The leading factor in its
original form accounts for writing plus reading. In the new
asymmetry-aware (rw) form this is more differentiated.

The term dlogmne estimates the number of required sort
phases, where m is the merge order and depends on the
available memory. The number of expected initial sorted
runs n was previously calculated under the assumption that
the initial sorted runs grow to two times the memory slice
available to the algorithm. They are generated by a heap
sort. As all tuples need to be sorted before the algorithm
can output the first, everything is counted as startup cost.

cio(sort) =

startup︷ ︸︸ ︷
2 ‖S‖p dlogmne

(
3

4
cs +

1

4
cr

)
(33)

cio(sort)rw =

startup︷ ︸︸ ︷
‖S‖p

(
csw +

(
dlogmne − 1

)csw + crw

2

+dlogmnecsr + crr

2

)
︸ ︷︷ ︸

startup

(34)

A.8 Hash Join
The cost function accounts for writing and reading all data

one time each. In the original form accesses are counted as
sequential, which does not match the real behavior. Our
asymmetry-aware form corrects that and counts the write
operations for batching as random writes.

cio(hashjoin) =

startup︷ ︸︸ ︷
‖Pi‖p cs +

(
‖Pi‖p + 2 ‖Po‖p

)
cs (35)

cio(hashjoin)rw =

startup︷ ︸︸ ︷
‖Pi‖p crw + ‖Pi‖p csr

+ ‖Po‖p (crw + csr)

(36)

B. CALIBRATED PARAMETER SETTINGS
Table 4 shows the parameters settings used for the exper-

iments. They were obtained using the calibration algorithm
described in Section 4.2.

Table 4: Optimal settings determined by calibration

old model new model

cs = 1.00000
csr = 1.00000
csw = 49.91840

cr = 6.77405
crr = 5.62724
crw = 19.08421

ċcpu = 0.00121 ċcpu = 0.00003
˙̂ccpu = 0.03658 ˙̂ccpu = 0.01608
cop = 0.00016 cop = 0.00008

For symbol explanation see Table 2.

Appendix B.1 shows a graphical plot of the first 1000 cal-
ibration cycles. The parameters shown in Table 4, however,
are (one of) the best seen configurations after about 11000
cycles.



B.1 Calibration Dynamics
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Figure 3: First 1000 iterations of calibration of new model
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