
A Methodology for Development of Web Service-based Business Processes

Dimka Karastoyanova
Technische Universität Darmstadt

dimka@gkec.tu-darmstadt.de

Abstract

This paper introduces a methodology for

development of WS-based processes, also called WS-
Flows. This procedure is based on a detailed WS-Flow
life cycle. The procedure aims at automating the
process of modelling and generating WS-flows
definitions in multiple languages by making use of
process templates and meta-programming techniques.
Process definitions can be generated from templates of
coordination protocols and thus provide support for
standard B2B interactions. The procedure promotes
the creation of an abstract process model and a
complementary meta-data repository. One of the main
principles followed in this methodology is deferring the
selection of process definition language to a latest
possible point in time and the commitment to concrete
WS instances up until the execution of the process
instance. This provides for the creation of WS-flows
able to adjust to the changing business environment
and exhibiting complex dynamic features during run
time. The procedure and the process features it targets
have certain implications on the process model and the
infrastructures for executing this methodology. These
implications are also briefly discussed.

1. Introduction

“Web services” is a technology aiming at
application integration across enterprises and over the
Web. It has become the emblematic embodiment of the
service oriented architecture (SOA). SOA is an
architectural paradigm that uses a distributed
environment to expose, discover and manage service-
oriented business logic. The three main participants in
the SOA are service provider, service requester and
service registry. SOA rests on the following basic
principles: dynamic discovery of business logic,
separation of service description and implementation,
and composability of services. The Web Service (WSs)
technology does not yet exhibit all features of a mature

service oriented middleware technology, though [1],
[8]. Development of complex WSs is one of the areas
in which WS technology should further evolve, that is,
to provide better support for recursive service
composability – one of the features characterizing
SOA. One way to create complex WSs is to use service
composition as implementation (such WSs are also
referred to as composite WSs). This requires providing
a way to create business processes that use WSs for
performing tasks on their behalf. Such processes are
referred to WS-based business processes, or WS-flows
[7]. In fact, there are already two specifications for
composing WSs: the Business Process Execution
Language for Web Services (BPEL4WS) [5] and
Business Process Modelling Language (BPML) [2] but
none has reached the required maturity. Either of the
two, however, has the potential to become broadly
accepted.

The development of WS-flow is a complicated
procedure. Such a methodology, if it existed, would be
accepted by developers only if it could be automated
and if it could shorten development time and hide
complexity. It has to also enable the creation of WS-
flows with characteristics appropriate for the
requirements of the environment. We elaborate on
these requirements in section 2.

In section 3 of this paper we introduce a
methodology for creation and execution of WS-based
business processes. This generic procedure is based on
a revised version of the process development lifecycle.
The procedure contributes to the support of
standardized inter-organizational interactions by
exploiting the relationship between B2B coordination
protocols and service composition. We demonstrate
how the procedure can be mapped on the development
and execution phases of WS-flows implemented using
the existing process definition languages, namely
BPEL4WS and BPML (section 4). The whole
methodology aims at making process development
faster and easier by means of automation, creating WS-
flows supporting B2B standards, and above all

providing dynamic features and adaptable behaviour of
the processes at run time.

2. Requirements on the design of WS-based
processes

The traditional workflow technologies are not well
suited for execution in a distributed service-oriented
B2B environment [4], [12]. They are developed to
support mainly intra-enterprise interactions, where no
trust and organization boundaries are crossed. Apart
from that the workflows do not assume services to be
performing work on their behalf as participants or
resources. As a result of the above traditional workflow
processes do not obey the SOA principles; moreover
they render only insufficient support for long-running
transactions and their models do not provide for
collaboration with partners. The workflow management
system (WfMS) implementations strongly dependent
on the platforms and programming languages, they are
based on vendor specific process models, and in most
of the cases lack flexibility and adaptability.
Traditional workflow technology, and especially the
process models and accompanying languages are
therefore not appropriate to be used for the
implementation of composite WSs. WSs expose
applications in platform- and language-neutral manner.
The technology defines unified communication
protocols utilizing the Web and a common language for
service interface description. These characteristics of
WSs enable the inter-organisational communication
across enterprise boundaries and over the Web but for
very simple interactions among simple WSs. The
inherent WSs features are not sufficient for composing
WSs in complex business processes. Besides, the
environment in which the WS-based processes have to
operate is quite different from the one the traditional
workflows operate in. There are additional
requirements imposed on the design of business
processes involving WSs. Those requirements are
mainly determined by the highly distributed
environment and the business rules, and include [10],
[11]:

• ability to describe processes spanning software
platforms and organizational boundaries

• ability to model collaborations, partners and
their roles in complex interactions

• ability to recursively combine processes –
requires that a process exposes a WS interface

• asynchronous service invocation to allow for
performance, reliability and scalability

• flexibility and adaptability to changes in the
business needs and environment

• availability of exception handling mechanism
• transactional support, especially for long-

running transactions
• compensation of finished work on behalf of the

process, without terminating the process itself
These requirements are imposed on the models for

WS-flows and on their corresponding definition
languages; the infrastructure for modelling and
executing the processes is also influenced by these
prerequisites.

In the next section we introduce a methodology for
developing and executing business processes that helps
to meet the above requirements.

3. A methodology for development and
execution of WS-flows

In this section we introduce a simple methodology
for design and execution of WS-flows.

The WS-based processes (WS-flows) are
meaningful combinations of tasks for the solution of a
business problem, which require work to be done by
discrete Web services in a predefined order and
according to rigorously stated business rules. The tasks
(units of work) a WS-flow combines are represented by
distinct elements of a process definition language,
called activities. Different types of activities
correspond to different types of tasks, e.g. simple and
composite activities; data manipulation, exception
handling, compensating activities etc.

Next we pay attention to the development life cycle
of such processes. In traditional workflow the process
development life cycle is defined in terms of only two
phases: build time and run time. This division is very
useful but not sufficient to define a procedure for
creating WS-flows with the desired characteristics. It
reflects the lack of effort towards standardizing process
models development procedure in the field of
traditional workflows. Here we briefly present a refined
process life cycle with additional development phases
(Figure 1). Those phases are:

• Process template modelling and assembly phase
• Process definition generation
• Compile time
• Pre-processing time
• Deployment
• Execution time
• Post-run time
Each phase addresses a different aspect of a process

definition. If it is needed a step in the development of
the process may be skipped; or a phase may be split
into multiple sub-phases. The WS-flow life cycle is the

framework on which the methodology we introduce
next is based.

In the process template modelling and assembly
phase (Figure 1) all standard and/or frequently used
combinations of activities are grouped in templates.
Templates can represent collections of activities
implementing patterns, activities with special features,
algorithms, place-holders for tasks defined by other
standards, mappings and extensions. Apart from
creating templates to be used in processes, whole non-
executable process definitions can be assembled out of
activity templates, and stored as process templates in a
template repository. The purpose of using templates is
to foster reusability and promote automation of WS-
flow development. A process definition template is
based on a process meta-model and represents abstract
description of the WS-flow to be developed. This meta-
model defines the structure of a WS-flow: it defines
types of activities that are used to create the WSs
composition, and data structures typical aspects such as
nesting or inheritance. A language corresponding to the
model must exist to represent the templates and the
WS-flow definitions in computerized form. Provided
that the process definition language is an extensible
one, all additional extensions can also be modelled and
implemented in this phase. As a result of this phase the
developers obtain a reusable process definition.

The process definition generation phase is the one
during which the process definition programmatic
representation is generated. Having the process logic
modelled during the previous stage we can generate the
process definitions in any WSs-based process
definition language. For this the process definition, i.e.
the template we obtained in the first phase, must
undergo one or more transformations. This phase can
be split into several sub-phases, depending on the
number of transformations that have to be performed. It
highly depends on the degree of customization we wish
to incorporate into the process definition, on the
targeted adaptability features, and on the particular
definition language we want our executable definition
to be coded in. The principles of the model-driven
architecture (MDA) [9] are extensively exploited
during this phase, revealed by the fact that process

definitions in multiple languages are based on a single,
common process model for one thing, and the use of
on-purpose transformation tools to generate language-
specific process definitions from that model for
another.

During the transformations the definition is enriched
with additional details and data related to the business
logic, to the abstract WS types used in the process, to
the data structures used in the executable process. The
tools needed to perform the transformations of the
process definitions generally include code generators,
compilers and other meta-programming techniques. All
the transformations of the process definition render it
closer and closer to the targeted executable process
definition. Real flexibility of the WS-flows can be
achieved if the commitment to a specific process
definition language is deferred to the latest possible
transformation; moreover, for providing dynamic
features to the process at run time no bindings to any
concrete WS instances should be specified.

The output of all the transformations is a process
definition that is either ready for deployment or has to
be compiled before deployment. In some cases a pre-
processing might be needed. For example BPEL
processes do not require compilation step, therefore it
is skipped. The location of each WS invoked by the
process has to be inserted into the definition, though;
therefore the pre-processing step cannot be skipped
because it will be used to provide the WSDL
descriptions of the participating WSs, as well as for
instance to generate the WSDL interface description of
the process itself.

In principle, the result of the procedure up to the
deployment phase is an executable WS-flow definition
with minimum reference to WS instances. Those WS
instances can be selected from a group of similar WSs
and bound to the process instance during run time. This
is dynamic invocation of WSs and provides for
adaptability of the process. Dynamic features of a WS-
flow are of great advantage. Additional degree of
flexibility can be achieved by providing reflection
support to the WS-flows. This is a feature missing in
both traditional workflow and WS-based compositions.

Figure 1. Life cycle of a WS-flow

Upon deployment a process definition is usually
enriched with execution environment specific data
and/or data related to the application execution. For
instance, in order to deploy a BPEL process on a
BPWS4j engine [6] it is required to provide the WSDL
interface description of the process (being a WS itself)
and the WSDL interfaces of all participating partners’
WSs. Once deployed, a process can be executed.

At run time a process is instantiated from its schema
(the definition) and executed. The process follows the
execution order scheduled by the process control flow,
and data is manipulated and exchanged between
process and the invoked WSs as it is defined by the
data flow. Depending on the process model and the
definition language, a process instance might exhibit
advanced dynamic features such as: finding the most
appropriate WS for performing a task at run time and
binding to it; use of complex choice policies based on
quality of service (QoS) parameters; and even
undertaking definition changes at run time. These
features should be supported by the engine
implementation.

It is always useful to gather information about the
process execution during run time, which can later be
used in the post-run time to analyse the process logic
and change it accordingly.

This procedure aims at providing certain features to
the WS-flows and has specific implications on the
process model and the infrastructure. We summarize
them next:
• Automation of the process definition development

is supported by using activity and process
templates, and a modelling tool. Additionally, the
availability of code generation tools (i.e. meta-
programs) and transformation tools to create the
process executable form shortens the development
time.

• Using predefined templates allows for hiding the
complexity from the developers. Templates can be
created for activities that consume and generate
messages, perform special complex algorithms, etc.,
even templates for whole conversational patterns of
which the developer does not need to know in
detail. This however requires the availability of
special template library or repository for storing
them. Separating the concerns of process
developers from the ones of template developers is
an approach usually preferred when developing
complex applications.

• Flexibility of the approach is achieved by
postponing the choice of a language for the
definition and thus providing the developer with the
free choice of technology and process execution

engine. By this process definition reuse and
technology leverage is also promoted.

• Adaptability of the process definition is facilitated
by deferring the binding to specific WSs to the
latest possible point in time. This deferred binding
to WSs instances has to be enabled by special
model constructs and their corresponding language
elements, and by the implementation of the WS-
flow engine. The engine must be capable of
executing process definitions with no given
concrete WS instance. It has to provide a so-called
“find and bind” mechanism for locating available
WS instances of the same type (defined by the
process schema) and binding to them during run
time. Choosing the most appropriate WS instance is
related to the concept of choice policy. Therefore it
is necessary to have a policy description language
in place, which should consider the quality of a
service in terms of different criteria, as well as its
availability and based on this to specify selection
rules. The model in turn has to accommodate this
mechanism and provide the corresponding
constructs (activities) for it. This mechanism
facilitates dynamic invocation of WSs at run time,
which is one of the ways to adapt a process to the
changing environment. Reflective support at run
time is a feature that also promotes adaptability.
This is a feature missing in the field of traditional
workflow. It requires a reflective repository storing
the meta-model of each process definition language
and a WS-flow engine supporting reflective
activities.
Creating WS-flows is only a step toward conducting

multi-party business interactions. WS-flow definitions
define only that part of such an interaction a single
party is responsible for; other participants must
implement their own parts of the interaction
accordingly. The interaction among parties is usually
described by an agreed-upon protocol, which has a
significant influence on the implementations of each
partners’ internal business process. In the next section
we extend the procedure for developing WS-flows by
exploiting this fact.

3.1. Relationship between coordination
protocols and WS-flows

In the previous section we introduced a general
procedure for developing WS-flows, which aims at
providing such processes with specific (and desired)
features. Developing WS-flows and being able to
execute them is only a small part of carrying out inter-
enterprise interactions. Complex multi-party business

interactions are enabled by implementing complex
sequences of operations among complex WSs in the
correct order. This is a topic described by the term
coordination [1], also known by the term choreography
[10]; for clarity the term coordination will be used
throughout this paper. Coordination is a term
describing the message sequence among multiple
partners, i.e. the public message exchange among WSs.
The coordination protocols are specifications of the set
of correct message exchanges, called conversations,
between parties in an interaction. A coordination
protocol assigns a role to each party in the interaction,
too. Each role in a coordination protocol has its own
role-specific view on the overall interaction. The party
implementing a specific role has to receive and send all
the messages specified by its view of the interaction
and in the prescribed order. Therefore the party
implementing a role has to produce and consume
exactly these messages as specified by the role
description. This fact reveals the influence coordination
has on the implementation of complex WSs.

The WS-flows are one way to implement complex
WSs. WS-flows are also denoted by the terms
orchestration [10] and service composition [1]; these
terms are used to denote executable business processes
or the private implementation of a composite WS. In
this sense, when implementing a WS using WS-flows,
the service orchestration definition has to implement
the role-specific view on the multi-party interactions.

Clearly, this relationship can be used to generate
WS-flow definitions that comply with coordination
standards [1], [11]. Based on the process model a
developer can create templates implementing role-
specific views defined by existing standards. These
templates can be further enriched by business logic
activities and/or whole business logic templates during
the first phase of the process life cycle. This means that
the composition schema must contain activities that
consume and send messages as it is prescribed by the
coordination and in the precise order [1], the
implication being that the model defining the WS-flow
schema must at least model activities for sending and
receiving messages, and in some cases data structures
to support message correlation. To allow for more
flexibility of the approach, here one should be allowed
to choose from among existing coordination protocols.
Therefore very generic activities receiving and sending
messages must be specified by the model and then
later, using a transformation, be mapped on the specific
constructs of the coordination protocols. The mapping
can be done during the modelling phase or if we prefer
to maintain greater flexibility, the commitment to a
protocol can be made in phase two during the

transformations of the WS-flow definition. One
implication on the platform for executing WS-flows
supporting coordination standards is that since it is not
the process engine to perform conversation routing a
coordination controller [1] must be included into the
infrastructure. The conversation controller can either be
a separate component of the platform or integrated in
the process engine. It is basically responsible for
performing mapping from the message format of the
coordination protocol to the message format used by
the engine and vice versa, for message routing, and for
correlation of messages to the correct process
instances.

Important for the success of such an approach is the
availability of process definition transformation tools
for any process definition language. This success can
be magnified by the availability of a variety of
coordination templates (role-specific) – residing either
at the model repository or at a special-purpose
standard-specific repository, as well as the availability
of tools to transform those templates into the syntax of
the different choreography protocols. Thus it will be
possible to create quickly and easily reusable process
definitions that can be transformed into any WS-flow
language definition, and that additionally provide
support for any coordination protocol.

To summarize, WS-Flow definitions exhibiting
support for standard B2B protocols can be created by
enhancing a role-specific conversation definition
written according to an existing B2B interaction
standard with the proper business logic. This can be
achieved using conversation templates during the first
phase of the methodology. The use of templates makes
it easier for the process developers to concentrate on
the proper definition of business logic. The templates
hide complexity of the conversations behind activities
that consume and produce messages. As a result from
the first stage an abstract description of a process is
created without any relation to any definition language,
WS instances or execution environment. In the next
sub-section we provide a short example that shows how
a coordination protocol template can be used to create
a WS-flow definition.

3.2. Implementing coordination protocol role
using a WS-flow

In this section we elaborate on the relationship

between the implementation of a composite WS and
the coordination protocol it takes part in using a simple
example. Consider the following coordination protocol
that defines the message exchange sequence between
four partners: a client, a converter, a bank and a

calculator. The interactions among those parties are the
following:

1. The client requests a cross-currency
calculation from a party playing a converter
role. The client sends two strings (identifiers
for the two currencies) and a number,
representing the amount in the original
currency.

2. Upon receiving a request, the converter sends
a message to a bank, which provides a service
for cross-currency exchange rates, and gets the
rate value.

3. The converter sends the exchange rate value
and the amount in the original currency to a
calculator service, and receives the result of
this simple calculation.

4. The converter sends the result of the
conversion to the client.

We call this very simple coordination protocol the
“cross-currency calculation protocol”. It is depicted in
Figure 2.

The converter role in this protocol has a specific
view on the whole coordination and it is shown using
an activity diagram in Figure 3.

According to some simple rules [1] the operations
described in Figure 2 are mapped to activities, i.e.
messages the converter role has to accept or produce in
Figure 3. The converter role specific view represents
the converter’s part in the overall interaction, i.e. its
public process. The public process can easily be
mapped to activities of the process model and a
reusable template can be constructed for exactly this
role and coded in the language corresponding to the
model. In the modelling phase a developer can pick this
template and add some business logic to generate a
non-executable WS-flow definition for the converter

role. This in turn can be considered as another template
for the business process to be implemented by a party
that will play the converter role, especially if its
representation does not refer to any specific language.

Having the abstract definition of the WS-flow the
procedure reaches its second phase – the process
definition generation phase. During this phase
additional details are inserted into the definition and as
a result an executable process definition is generated
from an abstract one. In the pre-processing phase or
during compilation (or both) additional data can also be
supplied. Depending on the targeted process definition
language, during deployment additional data can be
inserted into the process code. The WS-flow is then
executed.

To prove the plausibility of this procedure we show
how it can be used in the context of the existing WS-
flow technologies by means of the simple example,
presented in the next section.

4. Using the overall procedure to generate
definitions in existing languages

In this section we show a simple example and
explain how the procedure introduced earlier can be
mapped on a development of a BPEL4WS definition
and on a BPML process.

If we choose to implement the converter role of the
“cross-currency calculation” coordination protocol in
BPEL we can use the approach considered in the
previous section; Figure 4 represents how the proposed
methodology would look like in the context of BPEL.

Figure 3. An example of a simple coordination
protocol

Figure 2. Activity diagram for the converter role
interactions

In the first phase business logic is added to the
coordination protocol template for the converter role.
Such logic includes tasks such as copying data from
one variable to another, choice of conversion method
based on the data provided by the client, selection of a
bank if the client has explicitly specified such, and so
on [7]. This concludes the job to be done in the
modelling stage and we can proceed towards the
definition generation, where the input is the process
template (written in XML) and the result we wish to
obtain is a process definition in the BPEL language.
We have two alternatives in this case: we can either use
a code generator and a meta-repository to generate an
XML document with the BPEL syntax, or we can
perform simple transformations on XML documents
using XSLT. Having in mind the current version of the
BPEL specification [5] the number of transformations
can be very small (most probably up to two) in order to
get an executable BPEL process. The required WSDL
interface of the BPEL process can be provided during
the pre-processing step. This document can either be
written from scratch by the developer, or it can be
generated based on the process definition itself. For the
deployment of a BPEL process on a BPEL engine, e.g.
BPWS4j [6], it is necessary to specify the WSDL
descriptions of the process partners, in this case the
WSs implementing the “bank” and the “calculator”
role. After a BPEL process is deployed it can be
executed. There is no reflection support specified and
provided for BPEL processes and for any other WS-
flows so far, but for reason of completeness a model
repository is also depicted in Figure 4.
The procedure we considered in this paper can be used
for creating executable WS-flow definitions and for
generating their public processes/interactions. This can
be done by performing code transformations on the

role-specific coordination protocol templates. In the
case of BPEL this can be done very easily even during
the modelling phase, because the syntax the BPEL4WS
specification [5] defines is the same for both executable
processes and abstract BPEL processes. One can use
the same transformation tools, but the end result does
not have to be an executable process. This does not
apply for the Business Process Modelling Language
(BPML) [2], because it only deals with executable
process definitions, but it is closely related to the Web
Service Choreography Interface (WSCI) [3]. WSCI is
an interface description language that prescribes how
role-specific views in coordinated interactions are
created. Different tools are needed to generate
automatically the public interface of a BPML process.
In addition, WS-flows expose WSDL interfaces in
order to be accessible over the Web; these interfaces
can be generated, too, using some special-purpose tools
during the process definition generation phase.

5. Related work

The approach for development and execution of
WS-flows we introduced is closely related to the MDA
[9]. The process definitions are generated as a result of
transforming a WS-based process model into language
specific process definitions.

Lots of attempts had been done to provide for
automation of the development process and flexibility
of workflows. For example, an approach similar to the
one discussed here is represented in [11]; it, however,
deals mainly with integrating traditional workflow
processes with B2B interactions standards, such as
Rosetta Net PIP, CBL and others. The authors provide
a complete solution for automatically generating and
using process and service templates that comply with

Figure 4. Development life cycle of a BPEL process reflecting the proposed methodology.

B2B standards. The solution provides for the
integration coordination protocols with internal
workflow processes, uses a Conversation Manager for
conversation control, and specifies and uses a
repository of B2B services and process templates. It
aims at the easy and rapid adoption of B2B interaction
standards for coordinating conversations among
complex workflow processes. This approach is not
meant for the service-oriented systems; it includes
neither Web services nor any other kind of services as
workflow participants.

The relationship between coordination protocols
and process internal implementation and its
implications are discussed in [1]; the same relationship
is also considered in [10]. The discussion in [1] is
mainly focused on the characteristics of an
infrastructure for executing composite WSs that
support coordination protocols. An overview of the
architecture of an infrastructure for supporting such
complex WSs is provided. The authors elaborate on the
basic functions of a conversation controller and
protocol handlers and their place in such an
infrastructure for ensuring correctness and consistency
of the interactions. How to model the correct set of
conversations that a complex WS takes part in and the
restrictions it places on the internal implementation of
the WS are represented in terms of examples.

6. Conclusions

This paper presents a methodology for development
and execution of WS-based processes, also called WS-
flows. It is based on a detailed and revised process life
cycle phases. During the build time phases of the life
cycle a WS-flow definition is modelled and generated
from templates. The methodology allows also the use
of templates that comply with B2B interactions
protocols; thus it exploits the inherent relationship
between the definition of public interactions a process
takes part in and the internal implementation of the
process. Depending on the process model
characteristics it should be possible to generate flexible
and adjustable business processes supporting different
coordination protocols. This procedure reaps all
advantages of MDA; process definitions in multiple
languages can be created based on a common process
model. Applying the methodology could reduce manual
work of developers and help them easily create WS-
flows. The use of this procedure fosters process
definition reuse and allows developers to take
advantage of existing WS-flows technologies. The
procedure can also be used to transform process
definition written in one language into a definition in

another, using the common model as basis for the
conversion. Developers additionally benefit from the
approach because the WS-flows can include support
for existing standards for inter-organizational
interactions without being experts in this field.

7. References

[1] Alonso, G., Casati, F., Kuno, H., Machiraju, V., “Web
Services. Concepts, Architectures and Applications”,
Springer-Verlag. Berlin Heidelberg New York, 2003.
[2] Arkin, A. et al., “Business Process Modeling
Language”, BPMI.org, 2002.
[3] Arkin, A., Askary, S., Fordin, S., Jekeli, W.,
Kawaguchi, K., Orchard, D., Pogliani, S., Riemer, K.,
Struble, S., Takacsi-Nagy, P., Trickovic, I., Zimek, S., “Web
Service Choreography Interface v. 1.0 (WSCI)”, BEA
Systems, Intalio, SAP, Sun Microsystems, 2002.
[4] Curbera, F., Khalaf, R., Frank Leymann, Sanjiva
Weerawarana, “Exception Handling in the BPEL4WS
Language”, In Proceedings of the BPM2003, 2003.
[5] Curbera, F., Goland, Y., Klein, J., Leyman, F., Roller,
D., Thatte, S., Weerawarana, S., “BusinessProcess Execution
Language for Web Services (BPEL4WS) 1.0”, August 2002,
http://www.ibm.com/developerworks/library/ws-bpel
[6] IBM AlphaWorks, “IBM Business Process Execution
Language for Web Services JavaTM Run Time (BPWS4j)”,
IBM, 2002, http://www.alphaworks.ibm.com/tech/bpws4j
[7] Karastoyanova, D., “Creation and Deployment of Web
Services and Web Service Flows”, A Tutorial, In iiWAS2003,
The 5th International Conference on Information Integration
and Web-based Applications & Services, Austrian Computer
Society, September 2003.
[8] Karastoyanova, D., Buchmann, A., “Components,
Middleware and Web Services”, In IADIS International
Conference WWW/Internet 2003, Volume II, IADIS Press,
2003, pp. 967-970.
[9] Kleppe, A., Warmer, J., Bast, J., “MDA Explained. The
Model Driven Architecture: Practice and Promise”,
Addison-Wesley. 1st Edition. 2003.
[10] Peltz, Ch., “Web Services Orchestration and
Choreography”, IEEE Computer, October 2003, Volume 38,
Number 10, pp. 46-52.
[11] Sayal, M., Casati, F., Dayal, U., Shan M.-Ch.,
“Integrating Workflow Management Systems with Business-
to-Business Interaction Standards”, HP Laboratories Palo
Alto, 2001.
[12] Shapiro, R. “A Comparison of XPDL, BPML, and
BPEL4WS”, Cape Vision, May 2002,
http://xml.coverpages.org/Shapiro-XPDL.pdf

