
Extending an Open-Source BPEL Engine
with Aspect-Oriented Programming

Alejandro Houspanossian and Mariano Cilia ?

UNICEN, Faculty of Sciences
Campus Universitario Tandil, Argentina.
{ahouspan,mcilia}@exa.unicen.edu.ar

Abstract. This work presents an experience report that basically deals
with the problematic of extending an existing and evolving software sys-
tem. The ultimate purpose of the work is to incorporate new function-
ality into a base system in a maintainable way. Particularly interesting
is that the efforts for developing the base system and the efforts for ex-
tending it are carried out by two unrelated teams, which have different
goals and responsibilities. This document presents our experience work-
ing with Aspect-Oriented Programming (AOP) as the primary mecha-
nism for adding functionality to an existing and evolving open-source
project.

1 Introduction

There is a growing trend towards open-source software. Open-source is becoming
a real option for academic, governmental and even industrial software projects.
In contrast to proprietary/closed software, open-source comes with the source
code and thus it can be modified and extended as desired, in order to meet the
particular requirements of a particular organization (without the need to wait
for a new release, a bug-fix patch or to request a new feature to the software
provider). In such a context, there is a community (or a set of organizations)
that use and extend the open-source software. Because of the fact that software
evolves, it is interesting to analyze what happens when new versions of the
base software are released. In this work we tackle the problem of the software
evolution from the point of view of an organization that is extending an evolving
open-source system.

Open source software can be modified (adapted) in order to accommodate
to a particular set of requirements of a particular organization (i.e. the system
can be customized by changing the source code). The question is: what happens
with the customized version when a new version of the base system is released?
Basically, there are at least three possibilities: the customized version can be
replaced by the new system (losing the extensions); the new release can be
simply ignored; or, the new release can be customized again in order to meet the
particular requirements.
? Also Databases and Distributed Systems Group, TU Darmstadt, Germany.

This work documents the experience of extending an open-source software
system in order to add new functionality. Articular to the experience is that
the system to be extended is currently in evolution, evolution that we do not
control. Additionally, there is a requirement on adapting to new releases of the
base software as they appear. That is why we explore a maintainable and flexible
approach to the problem of software extension.

In this work we approach the extension of an open-source software system
through Aspect-Oriented Programming (AOP) [2]. We propose to introduce the
new functionality as aspects of the base system. By doing this, we have ex-
tended the open-source system in a flexible and maintainable way (successfully
accommodating to several releases of the open-source system).

Certainly, the idea of extending software by using AOP is not a new one [20].
Also, the literature about software extension and evolution is widespread [19],
and there are several works focused on the dynamics of open-source software
[21] [22]. However, to the best of our knowledge, the experience of using AOP
for extending evolving open-source software has not been reported in detail yet.

The context and the analysis of the problem are introduced in sections 2 and
3, respectively. Section 4 presents our approach and section 5 the conclusions.
This work is developed as part of the ReFFlow project [15].

2 Context - Problem Domain

This work deals with the the problematic of extending an existing and evolving
software system with the purpose of incorporating new functionality. Particularly
challenging is that both the system and its extensions are developed by different
and uncoordinated teams.

The base system (i.e. the system to be extended) is an open-source BPEL
engine called ActiveBPEL [6]; its evolution is managed by ActiveBPEL LLC,
an open source company.

The functionality we want to offer considers the ability to attach (loosely-
coupled) external tools (like auditing, process monitoring, process evolution,
etc.) to the ActiveBPEL engine.

The following sub-sections briefly introduce the concepts of BPEL and Pub-
lish/Subscribe, which are basic background for this work. Afterward, the inten-
tion of the desired extensions is presented to put all this in context.

2.1 About BPEL4WS

BPEL4WS [1] (or BPEL) stands for Business Process Execution Language for
Web Services. It is the emerging industry standard for describing and executing
business processes (see Figure 1). Current version of the standard is v1.1. The
standard is now being managed by an OASIS T.C. [8], but it was originally
developed by Microsoft, IBM, BEA, SAP and Siebel.

A BPEL engine is a workflow engine that executes processes specified with
BPEL. There is a big number of implementations of the BPEL standard, a few
of them are open-source projects, as it is the case of ActiveBPEL.

Fig. 1. Application Integration, Application Platform and Architecture Hype
Cycle - Gartner 2004

BPEL processes are composed of activities, the execution of a process im-
plies the execution of its activities. A lot of BPEL events occur in the engine
at runtime: new processes are deployed, some others are un-deployed, process
instances are created, suspended, resumed, and terminated. There are also a lot
of events related to the internal execution of the processes (i.e. related to the
execution of process activities). Additionally, there are events such as errors and
exceptions. In order to facilitate the further analysis we have classified BPEL
events in 3 main categories:

Engine Level Events are related to process deployment, instantiation, termi-
nation, suspension and resumption.

Process Instance Level Events are related to the execution of a process in-
stance, usually presented in term of process activities.

Errors and Exceptions although these are events undoubtedly inherent to
the execution of the processes and the engine, it is convenient to keep them
separated.

These are the categories of events that will be exposed, in order to reflect the
status of execution of BPEL processes.

2.2 About Publish/Subscribe

Publish/Subscribe (pub/sub) [5] is a mechanism for disseminating data. In a
pub/sub based solution, there is no direct relationship between producers and
consumers of data. Consumers (also known as subscribers) manifest their inter-
est, in the form of subscriptions, with the pub/sub infrastructure. Data produc-
ers (publishers) are not aware of data consumers and they make data available
through the pub/sub infrastructure. Actual data dissemination (which first in-
cludes the matching process between published data and subscriptions) is also
in charge of the pub/sub infrastructure.

The main advantages of this approach include the following: it decouples
consumers and producers of data/messages; the number of participants can vary
dynamically; and consumers only receive the messages of their interest.

2.3 About our Extension

The functionality we want to offer considers the ability to attach (loosely-
coupled) external tools (like auditing, process monitoring, process evolution,
etc.) to the engine. These tools need to be aware of what is happening with the
execution of processes running within the engine. But we do not want to specify
which tools neither to whom events need to be sent since this would imply a
closed set of tools. For this reason, we rely on a pub/sub infrastructure to dis-
seminate the status of the execution of BPEL processes. The information will
be published in terms of BPEL events1. Applying the pub/sub approach in this
context is really meaningful: nothing about the nature of the participants (e.g.
tools) needs to be assumed, the number of participants can vary at runtime and
different participant have different purposes and interests.

In summary, the system to extend is a BPEL engine and the new functionality
has to do with the publication (exposition) of the status of the engine by using a
pub/sub mechanism. The purpose and benefits of this is clear, to gain visibility
into business process execution. Security and privacy issues are outside of the
scope of this work. In this work, we do not deal with the underlying mechanism
used for the publication neither.

3 Analysis

In order to associate the new functionality to the base system, the ActiveBPEL
documentation and its source code must be analyzed. The purpose of the analysis
is to identify the places within the source code that need to be extended with our
functionality. Additionally to that, and in order to define the actual mechanisms
for extending the engine, also the way the engine has evolved in the past must
be analyzed.

1 BPEL events are those events signaled as consequence of the execution of BPEL
processes

The next two sub-sections present this analysis. Afterwards, the traditional
implementation approach for the extensions in question is introduced. Finally,
some concluding remarks are presented.

3.1 ActiveBPEL: Inside View

The ActiveBPEL engine is an open-source project developed in the Java pro-
gramming language. It was originally developed by a commercial company, Ac-
tive Endpoints, Inc. (AEI) [7]. AEI offers now commercial products based on the
open-source engine. As mentioned before, the evolution of the engine is currently
managed by ActiveBPEL, LLC, an open source company (which was created by
AEI).

The system is implemented following an Object-Oriented (OO) approach.
The project is divided and structured into components according to their func-
tionality (functional decomposition). The main functionality of the system in-
cludes: process deployment, Web Services handling, process representation and
process execution.

The source code is composed of about 700 Java classes. From its inspection
arose the following: one of the main classes offers a set of public methods which
is used by other components for signaling events (related to process execution).
These methods are invoked from all parts of the code and encapsulate the func-
tionality for event notification. The purpose of this mechanism is to provide for
remote debugging and console administration. In order to disseminate the events
there is an implementation of the observer pattern [14]. It means that new event
listeners can be implemented and attached to the engine.

From the analysis of the events and mechanisms used by the engine, we
noticed that: the event model we want to expose is not fully supported by the
event handling mechanism implemented in the engine. Basically, we need to
augment the information provided as part of the existing events and in some
cases trigger events that were not considered originally (like those related to
errors and exceptions). Although a detailed analysis of this is not the focus of
this work, the important thing to remark is that our pretended functionality
of event publication could not be solved in the context of a single ActiveBPEL
component (i.e. it can not be solved with a simple event listener).

3.2 ActiveBPEL Evolution

We have been following the evolution of ActiveBPEL, even before of its first
public release (which appeared in October 2004). Since then, no less than 10 in-
cremental versions have been released. One of the characteristics of open-source
software is that releases are made often than in commercial software [22]. Cur-
rently, the evolution continues, typically with monthly releases. We would expect
major releases encompassing the evolution of the BPEL specification.

Each release is announced with a message into an email-list, a summary of
the changes is provided as part of the message. The source code as the binaries

can be downloaded from the project’s web site [6] without major inconvenient.
Detailed release notes are also available there.

The changes introduced in a release are usually related to bug correction
and feature enhancement. In the later case the changes are usually encapsulated
in one single component, not so in the former. Usually, most of the changes
observed are completely unrelated to our extensions and do not involve dramatic
changes in the underlying structure of the system. One of the goals of the team
that develops the ActiveBPEL engine is to provide, continually, a stable and
robust system. In [21], the authors state that open-source projects that aim to
provide stable software usually are very conservative against evolutionary and
rapid changes.

3.3 Extension by Subclassing

The conventional OOP approach for extending functionality is by applying sub-
classing. Following this approach and according to our goal we would modify a
set of classes, and create others, in order to implement the desired functionality.
Basically the code of the extended functionality would be added to the code of
the engine (this approach is schematized in Figure 2). The code related to event
publication is scattered in the original code, involving many classes.

Fig. 2. Extension by Subclassing

A first approach to the solution would be to develop an event listener, as
defined in the ActiveBPEL project. However, as has been noticed, it will not
be enough. The reason is that the ActiveBPEL event model does not provide
all the information we need (i.e. we want to support an enhanced event model).
Because of this, we should also identify and modify a set of classes in order to
signal new events and add information to existing ones.

The number of classes to be modified is potentially high (see section 3.1).
The concern of event publication can not be solved in the context of a single
component (a single event listener, in this case). Additionally, this approach is
very dependent to changes in the base system (accommodating to new engine
releases would be very difficult). Please remember that the changes in the base
system occur regularly and are not necessarily limited to a single component of
the engine.

All these factors configure a situation that is not maintainable. In fact, ac-
commodating to a new version of the engine would be a very cumbersome task.
This is basically founded on the spread locality of the extensions. This problem
should be faced once and again, with every single release of the engine (even if
the changes introduced in the release were completely unrelated to our exten-
sions). Applying this approach would probably prevent the use of new versions
of the engine.

3.4 Preliminary Conclusions

As has been stated, the ActiveBPEL engine is evolving and new releases ap-
pear at a regular basis. We need to implement the extensions in a modular
and maintainable way, making it possible to benefit from ActiveBPEL improve-
ments over the time, without excessive maintainability costs. The conventional
approach (extending by subclassing) is not as flexible as desired, and is not a
viable solution for our problem. Because of this, we started to explore the AOP
approach.

4 Extending ActiveBPEL with AOP

In this section we present our approach to extend the ActiveBPEL engine. The
basics about AOP is introduced first. The design and implementation of our solu-
tion are presented in sub-sections 4.2 and 4.3, respectively. The section concludes
with an analysis (basically focused on maintainability issues).

4.1 Aspect-Oriented Programming

AOP [2] is a technology aiming at modularity and maintainability. AOP fosters
the goal of separation of concerns. The AOP technology emerged for modular-
izing crosscutting concerns. Classical examples of crosscutting concerns are (to
name just a few): logging, security or exception handling. Crosscutting concerns
are concerns (aspects) that can not be encapsulated into single components. On
the contrary, the implementation of these concerns crosscut the software struc-
ture of a system.

With AOP a crosscutting concerns like logging can be encapsulated into a
single component and coupled to the original system by defining the relevant
points in the code. In fact, using AOP the base system will not even note that

its method invocations are being logged. For an introduction to AOP the reader
is referred to [2].

The AOP approach enables the separation of concerns. Different concerns
(aspects) of a system can be developed modularly, and incorporated into a base
system automatically. Typically, in the infrastructure of an AOP system there is
a component (weaver) that is in charge of merging the code of the aspects with
the code of the base system (weaving). Important is, the source code of the base
system is not directly modified during the procedure. Depending on when the
weaving occurs, the tools for AOP are categorized into: static (compile and load
time weaving) and dynamic (run time weaving).

AOP is basically founded on the introduction of four major concepts: join
points, pointcuts, advices and aspects. Join Points are well defined points in
the execution flow of the underlying system. Pointcuts encapsulate a set of join
points, which match a given pattern. Advices are pieces of code to execute when
a pointcut is reached (actually before, after or instead of a pointcut). Aspects
are entities that encapsulate the definition of pointcuts and advices.

AspectJ [9][10] is by far the most known tool for AOP. The AspectJ approach
to weaving supports compile and recently also load-time weaving. It means that,
aspects are associated and disassociated to the base system statically, and not at
runtime. It is common knowledge, in the field of AOP, that the dynamic weaving
approach gains on flexibility, at the cost of performance. A deepest analysis of
this is certainly outside the scope of this work. Because we do not require any
dynamic (runtime) features, we have chosen AspectJ as the AOP tool to use.
AspectJ can be integrated, as a plugin, to Java development environments (like
Eclipse [12] and Borland JBuilder [13]).

4.2 Our Extension

Figure 3 clearly sketches our approach where our extension is completely isolated
and is coupled to the engine by using AOP.

As has been stated, the efforts related to the development of the base sys-
tem and the efforts related to the extension of the base system are orthogonal,
independent and are carried on in parallel by different teams. The item that
completes the configuration of the problem is the regular appearance of new
versions of the base system.

In this context, and after analyzing a conventional approach, we have decided
to analyze an AOP-based approach for extending the base system. This decision
was supported by our beliefs in the benefits of the separation of concerns. The
idea was clear: to keep the base system and our extension as separated as possible
in order to make the system maintainable.

4.3 Integrating the New Functionality

The main topic of this section is about how the new functionality is integrated
into the engine execution flow. We use AOP techniques to intercept the execution

Fig. 3. Extension by AOP

of the engine with the purpose of connecting the new functionality. Namely, we
define a set of AOP join points that, in turn, define the connection points between
the engine and the extensions.

The first step in order to extend the engine is to detect the join points and de-
fine the pointcuts. Such a task requires, of course, knowledge and understanding
about the base (underlying) system. From the analysis presented in section 3.1
we already know that the engine currently fires some events to announce status
changes. The class AeBusinessProcessEngine (package org.activebpel.rt.bpel.impl)
provides two methods that are good places to add two first pointcuts. One of
these methods is:

//Class: org.activebpel.rt.bpel.impl.AeBusinessProcessEngine
public void fireEngineEvent(IAeEngineEvent aEvent)

This method is executed whenever an engine event (according to ActiveBPEL
event model) needs to be signalled.

The pointcut (fireEvent) is defined as follows:

pointcut fireEvent(IAeEngineEvent event):
(call(void AeBusinessProcessEngine.fireEngineEvent(IAeEngineEvent))
&& args(event)
) ;

The pointcut fireEvent comprises all the invocations to the method fireEngi-
neEvent(IAeEngineEvent) (of all the instances) of the class AeBusinessProces-
sEngine that do not return a value. We have defined a first connection point for
the new functionality. Other connection points can be defined in the same way.

Once the pointcut has been defined, it is time of integrating the extended
functionality, which is done in terms of advices. Both pointcuts and advices are
defined in aspects. The following code listing presents an aspect called Event-
Publishing :

import org.activebpel.rt.bpel.impl.AeBusinessProcessEngine;
import org.activebpel.rt.bpel.IAeEngineEvent;
public aspect EventPublishing {

...
pointcut fireEvent(IAeEngineEvent event):

(call(void AeBusinessProcessEngine.fireEngineEvent(IAeEngineEvent))
&& args(event)
) ;

after (IAeEngineEvent event): fireEvent(event) {
publish(event);

}
...

}

The EventPublishing aspect will intercept every single method invocation related
to event signalling and will involve the extended functionality. The syntax used
to define an aspect is quite simple. It is easy to define new pointcuts, advices
and aspects. Once detected, other pointcuts can be added in the same way as
fireEvent to the same aspect EventPublishing or to a new one.

As mentioned before, there are some connection points specifically related
to exceptions, an example where such a case is managed is presented next. A
portion of the original Java code follows:

public void AeAxisBase.deployToWebServiceContainer(..)
throws AeException

{
...
AeException.logError("Axis deployment failed: ");
throw new AeException("Axis deployment failed.", error);

}

AspectJ provides before throwing and after throwing constructs to manage ex-
ceptions as it is shown below:

pointcut deployment():
(call (void AeAxisBase.deployToWebServiceContainer(..));

after throwing (AeException e): deployment{
publish(e);

}

These examples show the basic AOP mechanisms we are using in order to
extend the base system.

Other Extensions In addition to the the functionality of event publication,
and in the context of the ReFFlow Project [15], we are also working on other
extensions [16] [17] [18] which are also being introduced to the BPEL engine
with AOP. One of these extensions provides the ability to select, at run time,
the ports (Web Service instances) that a BPEL process instance uses. Basically,
we are using AOP to detect problems during the invocation of Web Services.
Upon a port invocation failure, our extended functionality finds and binds a
new port to the process instance. In the following we briefly present the aspect
that introduces this recovery mechanism to the engine. More about the concepts
behind this mechanism and its implementation can be found in [18].

The original ActiveBPEL code for managing the invocation of Web Services
can be summarized in the following snippet:

//Class: org.activebpel.rt.axis.bpel.AeInvokeHandler
public IAeWebServiceResponse handleInvoke(IAeInvoke aInvokeQueueObject){

...
try{

invokeWS(portData);
}catch (RemoteException e){

e.printStackTrace();
//the running process will be aborted
...

}
...

}

Originally, whenever a fault is detected during the invocation of a WS, the
involved BPEL process is aborted. A summarized version (non-relevant details
have been omitted) of the aspect that we use to introduce our functionality is
presented next:

0 public aspect DynamicRecoveryAspect{
1 pointcut invoke(PortData port):
2 call(private void AeInvokeHandler.invokeWS (port))
3 && args(port);
4
5 void around (PortData port)
6 throws RemoteException: invoke(port){
7 try {
8 proceed(port); //execute the original invokeWS method
9 }catch(RemoteException fault){
10 if (!dynamicDiscoveryEnabled()){
11 throw fault;
12 }
13
14 // if the dynamic discovery feature is enabled,
15 // get a new target port and proceed
16
17 PortData newPort= getNewPort(port);
18 proceed(newPort);
19
20 // The original invokeWS method is executed again,
21 // but this time with a new parameter
22
23 }
24 }
25 }

In the DynamicRecoveryAspect aspect the around clause is used, the meaning
of this is that the advice wraps the original join point. By using the proceed con-
struct (lines 8 and 18), the computation related to the join point (the invokeWS
method in the example) can be executed, one or more times, even with different
parameters. The proceed clause adopts the signature of the join point (returning
type, arguments, exceptions). The DynamicRecoveryAspect aspect executes the
original join point with the original parameter (line 8). If an exception is de-
tected, the running process is not aborted, but a new port is found and bound
to it (line 17). Finally, the join point is executed again, but this time with a new
parameter. In line 11 (and eventually also in line 18) a RemoteException could
be thrown, because of this the declaration throws RemoteException in line 6.

In contrast to the pub/sub extension (where the engine was extended without
changing its original behavior) here the base system is enhanced to support
failure handling.

4.4 Evolution and Maintainability

Because we use AspectJ as the AOP tool, the source code of the base system is
not directly modified. The first consequence of this approach is gaining flexibility
and the ability to accommodate to new ActiveBPEL engine releases easily.

This approach fosters the separation of concern, in that the engine and the
extensions can evolve almost independently.

AspectJ supports jar weaving, meaning that a jar file containing the base
system can be weaved with the aspects in question without the need of having the
source code. Similarly, the aspects can be provided as source files or bytecodes.

We exploit the jar weaving AspectJ feature in order to automate the weaving
process. Namely, we defined an ANT task [11] that receives the jar files of the
base system and the sources of the aspects and weaves them2. In those cases
where the engine release does not include any major modification, the engine
could be automatically enhanced by executing the following ANT task:

<target name="weave" depends="...">
<!-- weave jar -->
<iajc outjar="${lib}/ae_rtbpelsvr_woven.jar"

injars="${lib}/ae_rtbpelsvr.jar">
<sourceroots>
<pathelement location="${src}/aspects/refflow/aop"/>
</sourceroots>
<classpath>

<fileset dir="${lib}" includes="**/*.jar"/>
<pathelement location="c:/tools/aspectj1.2/lib/aspectjtools.jar"/>
<pathelement location="c:/tools/aspectj1.2/lib/aspectjrt.jar"/>

</classpath>
</iajc>

</target>

Regarding to accommodating to the evolution of the engine, the most dra-
matic case would be that in which the structure of the engine is extremely
modified from a version to another (as it would be the case of major releases).
In such a case, the aspects would need to be adapted accordingly. However, most
of the modifications would be restricted to pointcuts adjustment, by detecting
again the places to anchor the extension. These are not really bad news since the
definition of pointcuts are relatively simple. But most important, the function-
ality of the extension do not need to be modified. The difficulties at the time of
accommodating to a new version of the system will be mostly related to the task
of detecting the places where the extensions must be placed, but it is inherent to
the problem of extending a software system (and not to the approach followed
to extend the system).

Since October 2004, we have worked with several ActiveBPEL releases, and
we have not observed dramatic changes in the software internal structure. As a
consequence, our extensions evolved along the new versions of the base software
without major redefinitions of our pointcuts. The only change that actually had
impact over our pointcut definitions was one related to the mechanism used
for invoking Web Services. The change also involved the creation of a new java
2 More about ANT tasks and AspectJ can be found in The AspectJ Development

Environment Guide [10], chapter 2.

package and redistribution of some classes. This has affected the implementation
of the DynamicRecoveryAspect aspect (namely the paths of some classes were
changed). Anyway, the analysis required to extend the new version of the system
was simple. It must be noticed that this kind of changes are announced in the
corresponding release notes.

5 Conclusions

We started our work by analyzing the base system to evaluate the impact of our
extensions in the source code. As a result, the potential changes were scattered
among many classes and therefore the adoption of the traditional OOP approach
was considered as inappropriate since the base software evolves continuously.

Thus, we adopted the AOP approach and concentrated our efforts on develop-
ing our extensions (dissemination of engine’s internal state and failure handling)
as aspects and then bound them to the base system by defining pointcuts.

Our extensions, developed as aspects, evolved along various releases of the
open-source base software without major changes. It must be highlighted that
the base software and our extensions were developed by unrelated developer
teams.

We adopted AspectJ and since it supports jar weaving, an automatic mech-
anism to weave our extensions was defined. This can be obviously applied after
reading/evaluating the corresponding release notes. We believe that a (semi-) au-
tomatic generation of release notes could also help with the detection of possible
impact of a new releases on the developed aspects.

This experience report has shown the value of using AOP technology to ex-
tend an evolving open-source software system. In this work we have presented the
way AOP has helped to manage successfully the continuous (natural) evolution
of a base system. We have also shown the benefits of using AOP for supporting
a non expected evolution (i.e. our extension) of a system.

6 Acknowledgements

We want to thank Jane Pryor and Claudia Marcos for their comments on the
draft version of this document. Additionally, we would like to thank Dimka
Karastoyanova for the fruitful discussions related to BPEL, the engine and the
extensions.

References

1. Curbera, F., Goland, Y., Klein, J., Leymann, F., Roller, D., Thatte, S., Weer-
awarana, S.. Business Process Execution Language for Web Services (BPEL4WS
Specification v1.1): http://ifr.sap.com/bpel4ws/

2. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Videira Lopes, Jean-Marc Loingtier, John Irwin. Aspect-Oriented Programming.
ECOOP97, Finland, June 1997.

http://ifr.sap.com/bpel4ws/�

3. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm and
William G. Griswold. An Overview of AspectJ. ECOOP01, Budapest, Hungary,
2001.

4. Ruzanna Chitchyan and Ian Sommerville. Comparing Dynamic AO Systems. In
Proceedings of the 2004 Dynamic Aspects Workshop, Lancaster, England, 2004.

5. P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces
of publish/subscribe. ACM Computing Surveys, 35(2):114-131, 2003.

6. ActiveBPEL Engine. http://www.activebpel.org/
7. Active Endpoints, Inc. http://www.active-endpoints.com/
8. OASIS. http://www.oasis-open.org/
9. AspectJ Home Page. http://www.aspectj.org

10. The AspectJ Development Environment Guide
http://www.eclipse.org/aspectj/doc/released/devguide/

11. ANT Home Page. http://ant.apache.org/
12. Eclipse Home Page. http://www.eclipse.org
13. Borland JBuilder Home Page: http://www.borland.com/jbuilder/
14. E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns Elements of

Reusable Object-Oriented Software, Addison Wesley, 1995. ISBN 0201633612.
15. The ReFFlow Project. www.dvs1.informatik.tu-darmstadt. de/research/refflow/
16. Karastoyanova, D., Buchmann, A.: Extending Web Service Flow Models to Provide

for Adaptability. In Proceedings of OOPSLA ’04 Workshop on ”Best Practices and
Methodologies in Service-oriented Architectures: Paving the Way to Web-services
Success”, Vancouver, Canada, 2004.

17. Karastoyanova, D., Buchmann, A.: ”Development Life Cycle of Web Service-Based
Business Processes. Enabling Dynamic Invocation of Web Services at Run Time”.
In Proc. of the Second International Workshop on Web Services: Modelling, Ar-
chitecture and Infrastructure (WSMAI-2004), Porto, Portugal, April 2004.

18. Karastoyanova, D., Houspanossian, A., Cilia, M., Leymann, F., Buchmann, A.:
Extending BPEL for Run Time Adaptability. To appear in Proc. of the 9th In-
ternational Enterprise Distributed Object Computing Conference (EDOC 2005),
Enschede, The Netherlands, September 2005.

19. Lehman, M.M., Ramil, J.F.: An Approach to a Theory of Software Evolution. In
Proc. 2001 Intern. Workshop on Principles of Software Evolution, 2001.

20. Walter Cazzola, Shigeru Chiba, Gunter Saake (Eds.): RAM-SE’04-ECOOP’04
Workshop on Reflection, AOP, and Meta-Data for Software Evolution, Proceed-
ings, Oslo, June 15, 2004. Fakultät für Informatik, Universität Magdeburg 2004.

21. Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka, Kouichi Kishida,
Yunwen Ye: Evolution Patterns of Open-Source Software Systems and Commu-
nities. International Workshop on Principles of Software Evolution 2002 (IW-
PSE2002), Orlando, FL, May 19-20, 2002

22. Robins, J.:Adopting OSS Methods by Adopting OSS Tools. In 2nd Workshop on
Open Source Software Engineering, held at ICSE 2002, Orlando, FL, USA, May
2002.

http://www.activebpel.org/�
http://www.active-endpoints.com/�
http://www.oasis-open.org/�
http://www.aspectj.org�
file:www.eclipse.org/aspectj/doc/released/devguide/ .dvi�
http://ant.apache.org/�
http://www.eclipse.org�
http://www.borland.com/jbuilder/�
http://www.dvs1.informatik.tu-darmstadt. de/research/refflow/�

