
Effective runtime monitoring of distributed
event-based enterprise systems with ASIA

Sebastian Frischbier∗, Erman Turan∗, Michael Gesmann†, Alessandro Margara‡, David Eyers§,
Patrick Eugster¶, Peter Pietzuch‖, Alejandro Buchmann∗

∗Technische Universität Darmstadt, lastname@dvs.tu-darmstadt.de
†Software AG, Michael.Gesmann@softwareag.com

‡University of Lugano (USI), alessandro.margara@usi.ch
§University of Otago, dme@cs.otago.ac.nz

¶Purdue University, p@cs.purdue.edu
‖Imperial College London, prp@doc.ic.ac.uk

Abstract—Cyber Physical Systems (CPS), interconnected smart
devices in the Internet of Things (IoT) and other data sources are
increasingly bridging the gap between the physical and digital
world by providing fine-grained data about real-world events.
Enterprise software systems are adopting the paradigm of event-
based systems (EBS) to enable them to react to meaningful events
in a timely manner. Smart supply chains fusing dynamic sensor
data with information provided by backend-systems are one such
example of event-based enterprise systems.

Monitoring their global state in an effective way for runtime
governance remains an open research challenge: providing the
required type of information while trading off precision for
costs. We previously introduced application-specific integrated
aggregation (ASIA) as a means for collecting metadata in
distributed event-based systems. In this paper, we show how ASIA
can support IT Service Management in monitoring and governing
decentralized event-based enterprise systems at runtime. We
present a dashboard based on industry-strength technology as
proof of concept and discuss how to integrate usage statistics
provided on-the-fly by ASIA into metrics for runtime governance.
We evaluate our monitoring approach in terms of performance,
scalability and precision.

I. MOTIVATION

In the Internet of Things (IoT), a multitude of data sources

offer continuous information about events taking place in the

physical world. Prominent examples are temperature readings

about temperature-sensitive freight or geographical coordi-

nates of trucks delivering goods. Enterprise software systems

today have to bridge the gap between the physical and the

digital world by fusing the information provided by Cyber

Physical Systems (CPS) and other data sources with metadata

provided by backend systems [3].

Event-based systems (EBS) within an enterprise application

landscape complement service-oriented architectures (SOA) to

leverage streams of dynamic real-time information and react to

meaningful events in a timely manner [2]. For example, smart

supply chain management (SCM) systems can automatically

redirect delivery routes of cargo containers or trigger processes

to replenish goods if they detect delays along the supply chain

based on incoming notifications; financial trading applications

decide to buy or sell company shares based on real-time

news feeds; and data centre management systems scale and

reassign resources based on detected usage patterns [17]. In

these examples, services in a SOA are invoked by components

of an EBS that receive or detect meaningful events. Service

invocations, in turn, can result in meaningful changes to a

system, triggering components of an EBS to publish events.

EBS are anonymous, information-centric networks. They

consist of loosely-coupled software components with differ-

ent roles that communicate asynchronously using messages:

Publishers are components that publish notifications if they

have detected a specific event taking place. Subscribers are

components that want to be notified about specific events. Sub-

scribers and publishers are fully decoupled by a notification
middleware that pushes notifications from publishers to sub-

scribers as soon as they are published. Dependencies between

components are formed dynamically at runtime, based on the

type, quality-related properties or content of notifications [11].

For example, notifications about temperatureEvent with

content temperatureCelsius = 30 and a confidence of 95%

are published at a rate of 10 events/second.

As EBS are augmenting core parts of enterprise software

systems alongside SOA, runtime governance based on service

level agreements (SLAs) has become a key issue for IT Service

Management (ITSM) [8]. A key component for any runtime

governance activity is effective runtime usage monitoring

to identify hotspots or bottlenecks on-the-fly, as opposed

to ex-post analysis based on parsed log files [1]. Effective

monitoring balances the required data quality of monitoring

information with the costs of capturing that information within

a given time constraint. Data quality refers to the granularity,

precision, consistency or freshness of monitoring updates

while costs are measured in terms of performance and traffic

overhead [17].

Runtime monitoring for EBS refers to monitoring the

population and dynamics of the system: (1) the number of

publishers and subscribers that are active for notifications of a

certain type, property or content; (2) the rates at which those

notifications are supplied and requested. This exceeds common

packet-level monitoring of network traffic as the individual

information itself has to be observed—for example monitoring

the number of publishers providing temperature data about

2014 IEEE 7th International Conference on Service-Oriented Computing and Applications

978-1-4799-6833-6/14 $31.00 © 2014 IEEE

DOI 10.1109/SOCA.2014.25

41

2014 IEEE 7th International Conference on Service-Oriented Computing and Applications

978-1-4799-6833-6/14 $31.00 © 2014 IEEE

DOI 10.1109/SOCA.2014.25

41

cargo container #50 with at least 75% confidence.
Providing effective monitoring for decentralized and dis-

tributed EBS remains an open research topic due to the

inherent anonymity and scalability of EBS. Current ap-

proaches have limited effectiveness as they require the de-

ployment of additional monitoring overlays (e.g. SDIMS [26]

or Adam2 [23]) that provide a fixed set of available metrics

with limited granularity. Traffic overhead and additional effort

for operation and maintenance increases monitoring costs [9].
We propose a new approach to effectively monitor large-

scale distributed EBS based on the concept of application-
specific integrated aggregation (ASIA). Our approach provides

fine-grained runtime monitoring metrics about the population

and dynamics of an EBS without compromising performance

and scalability. Users can deploy their own metrics and in-

dividually balance the measurement costs with the freshness

and precision of the reported monitoring information. Users

of our approach do not have to frequently pull information

about the current state of the system. Instead, they are informed
proactively only if the state of the system has changed to a

degree that they have defined as being significant for them.
Our approach allows users to individually specify the

granularity of the metrics they want to be updated about

and the precision of these updates. Granularity refers to

what is measured (e.g., the number of subscribers for any

temperatureEvent versus the number of subscribers only

interested in temperatureEvents for cargo container #50

at confidence ≥78%). Precision specifies the degree to which

the reported system state differs from the true value. For

example, a user wants to be notified only if more than ten

subscribers for temperatureEvent have left or joined the

system; smaller fluctuations in membership are not considered

to be significant. Our approach exploits such relaxations on

information precision in a novel way to limit the propagation

of unnecessary updates within the network and to clients.
This paper makes the following contributions:

1) we describe a novel concept for effectively monitoring

large-scale distributed EBS at runtime based on the notion

of application-specific integrated aggregation (ASIA) that

we have introduced in previous work [9];

2) we show how users of our approach can individually

balance the precision and freshness of the monitoring

information they receive against the costs for providing

it by choosing different levels of imprecision applied to

the monitoring updates reported to them;

3) we evaluate our monitoring approach in terms of per-

formance, scalability and precision using a distributed

deployment on 32 physical machines;

4) we present a dashboard based on industry-grade software

technology to visualize key metrics about the global state

of a distributed EBS on-the-fly.

The remainder of this paper is structured as follows: Sec-

tion II provides background information on distributed EBS

and ASIA. Section III focuses on challenges for runtime

governance of event-based enterprise software systems using

an SCM example. The architecture and implementation of

the ASIA dashboard built with Software AG Mashzone and

Java enterprise technology is described in Section IV. We

evaluate our monitoring approach in terms of performance,

scalability and precision in Section V. We discuss related work

in Section VI. We summarize our findings in Section VII and

outline steps necessary to apply the FIT-metric [7] to event-

based applications as part of ongoing and future work.

II. BACKGROUND: DISTRIBUTED EBS AND ASIA

A. Event-based systems in a nutshell

Event-based systems (EBS) are reactive systems designed

around the concept of events. An event is defined as a signif-

icant change of state in the physical or digital environment

of a system [13]. Publishers report each detection of an

event by publishing a notification that describes the event;

they announce the events that they are going to report on

using advertisements. Subscribers express their interest by

subscribing to notifications that match a class of events, a set

of properties, or specific content; subsequent lack of interest

is expressed by unsubscribing from already subscribed events.

Subscribers and publishers use an API offered by the notifica-

tion middleware [21]. The middleware transparently matches

subscriptions to advertisements and routes notifications to

interested subscribers. Publishers and subscribers are unaware

of each other and are anonymous. The middleware can consist

of a single, centralized message broker or a distributed and

decentralized network of brokers as illustrated in Fig. 1.

Each broker requires only local knowledge about its directly

connected neighbors (c.f. Fig. 1).

This is beneficial for scalability but complicates the task of

maintaining a global view on the state of the system: local state

information has to be aggregated and synchronized between

brokers. The dynamic nature of EBS means that the aggregated

data continuously changes over time, resulting in a large

number of synchronization messages. Current solutions for

providing aggregate information include the use of centralized

messaging systems, group communication systems that pro-

vide a form of membership view, or straightforward extraneous

direct communication between components. All of these ap-

proaches, however, hamper scalability. Distributed aggregation

systems (e.g. Astrolabe [25], SDIMS [26] and Adam2 [23]) are

scalable but require the deployment of a stand-alone system

alongside an EBS. This has multiple drawbacks: it increases

the overall system complexity; results in redundant network

traffic; and potentially leads to inconsistencies with the state

of the monitored EBS.

B. ASIA: aggregate metadata effectively in distributed EBS

We propose a mechanism to effectively monitor the system

state of distributed decentralized broker networks using the

concept of application-specific integrated aggregation (ASIA).

ASIA allows the various components of the distributed sys-

tem to collect (aggregated) information about each other, with-

out affecting the scalability and performance of the system.

Instead of adding a monitoring overlay, ASIA dynamically

integrates monitoring functionality into the broker network at

4242

S

S

P

P

P

S

B

B

B
B

B

Bk

B

Neighborhood of broker Bk

Fig. 1. Distributed decentralized EBS with publishers (P) & subscribers (S).
Brokers (B) need only local knowledge about direct neighbors (hatched area).

runtime, using an approach that is inspired by aspect-oriented

programming (AOP). Integrating ASIA into the broker net-

work provides scalability, performance and precision benefits:

(i) it eliminates the cost of creating and maintaining a separate

infrastructure; (ii) it enables piggybacking of information on

existing messages; (iii) it facilitates use of the local knowledge

of brokers, improving the quality of the provided information.

We have successfully implemented and evaluated a proto-

type within the distributed REDS open-source middleware,1

focussing on the overhead of dynamically deploying new

aggregations. A second implementation using the industry-

grade ActiveMQ2 infrastructure is operational for a single

message broker; support for networks of ActiveMQ brokers

is part of ongoing work. We refer to [9] for details about the

software engineering perspective of ASIA and its evaluation.

In this paper, we focus on how users and the system can

benefit from using ASIA for effective runtime monitoring of

large-scale distributed EBS.

At the heart of our approach is the notion of imprecision:

users can individually define what they consider to be insignif-
icant changes they do not want to be informed about. For each

monitoring metric they are interested in, users can specify an

imprecision v̂ at runtime; it specifies how far the observed

system state is allowed to vary from the most recent report

of metric values, before an update is triggered regarding those

metrics’ values. Our novel contribution is to propagate this

relaxation throughout the network of an EBS: imprecision is

split up between neighboring brokers and applied by every

participating broker in the EBS, minimizing the number of

update messages necessary to generate and process. For ex-

ample, each broker can evenly split the imprecision among all

its neighbors when propagating a request for monitoring data.

We use imprecision not only to mask insignificant changes

to the user when displaying data but we already optimize the

generation and processing of monitoring updates within the

network to save system resources.

Fig. 2 illustrates the resulting trade-off: requests for mon-

itoring data with high precision result in a large number of

update messages as even minor changes are reported. In turn,

higher imprecision reduces update messages but leaves users

with a coarse-grained representation of the system state.

1http://zeus.ws.dei.polimi.it/reds/
2https://activemq.apache.org/

Total number of updates
reported Imprecision of

aggregation computation

low high

True value
Upper bound
reported True value

Imprecision

Lower bound
reported

Precision of metrics reported by ASIA

Fig. 2. Imprecision trades data precision with costs for processing updates:
upper and lower bounds of monitoring updates enclose the true value.

0 20000 40000 60000 80000

0
20

40
60

80
10

0
12

0

Time elapsed (milliseconds)

E
ve

nt
s

pe
r

se
co

nd

Fig. 3. Example for a changing publication rate: average number of
notifications per second published using the workload described in Sect. V.

As a result, updates reported by ASIA to neighbors do not

contain a single value for each metric but an interval of values

(lower bound and upper bound) that encloses the true value

for this metric (c.f., Fig. 2, bottom); the size of the interval

depends on the chosen imprecision. Updates are generated and

sent to neighboring nodes in the network only if the true value

exceeds the boundaries of the interval that has been reported

to that neighbor before. Thus, the system does not have to

process unnecessary updates.

For example, the rate at which certain events are published

per second (publicationRate) changes dynamically over time

as shown in Fig. 3. A user might not care about deviations

of ±20 events/second, thus chooses an imprecision of 20.

Consequently, the reported updates to the system state reflect

the general rate distribution over time but hide insignificant

changes. Fig. 4 illustrates this for the workload shown in

Fig. 3: the temporarily declining rate (hatched area) is ignored.

III. RUNTIME GOVERNANCE OF EBS WITH ASIA

We illustrate some challenges for runtime governance of

EBS using the following example from the domain of smart

supply chain management [14], and indicate how ASIA can

help address those challenges.

A. Example: Smart Supply Chain Management

Consider a supply chain with multiple cooperating com-

panies that processes temperature-sensitive chemicals. Com-

4343

0 20000 40000 60000 80000

0
20

40
60

80
10

0
12

0

Time elapsed (milliseconds)

E
ve

nt
s

pe
r

se
co

nd

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Monitoring update, upper bound
Monitoring update, lower bound

Fig. 4. Higher imprecision hides details: publication rate (c.f., Fig. 3) as
perceived by clients using ASIA aggregations with an imprecision of 20.

pany ChemProvider produces the chemicals, companies Car-

rier1 and Carrier2 ship them to the consuming companies

PetroChem and PharmaChem. The chemicals are transported

in smart cargo containers provided by ChemProvider. Each

cargo container is equipped with a position sensor and a set

of wireless temperature sensors to monitor the cargo container

they are attached to. Each temperature sensor produces noti-

fications of the type temperatureEvent with a property

identifying the cargo container (i.e., ccontainerID = 50) and

a measurement in ◦C; the position sensor sends notifications

of the type positionEvent with a property identifying the

cargo container and its geographical coordinates. All sensors

send their notifications to a message broker located on the

cargo-ship or truck they are stored on. Those message brokers

are part of the network of either Carrier1 or Carrier2. However,

they form a decentralized network of brokers together with

brokers controlled by ChemProvider, PetroChem and Pharma-

Chem. At warehouses, checkpoints, ports and highways, pass-

ing trucks are automatically registered by traffic monitoring

systems, RFID readers or other devices.

All three companies are interested in position updates of

their respective shipments to determine the state of supply.

Furthermore, they are interested in the containers’ current

temperatures, measured by at least 3 sensors at a defined

minimum rate for quality assurance purposes. This information

is required by different business critical enterprise applications

with tight SLAs such as systems for enterprise resource

planning (ERP) or advanced planning and scheduling (APS).

B. Runtime monitoring metrics

The whole setup can be modeled as a decentralized EBS

spanning across multiple companies: sensors attached to the

containers advertise and publish updates about position and

temperature while the enterprise applications interested in

updates subscribe to notifications about containers associated

with their shipments. The various devices able to identify

trucks are acting as publishers as well. Notifications are

forwarded by the distributed broker network across company

borders. As part of runtime governance, all parties have to

assure that the participating systems are operating efficiently

and meet their SLAs.

Focussing on publishers and subscribers in our scenario,

IT Service Management at PetroChem and IT Service Man-

agement at PharmaChem have to frequently check that their

systems that are acting as subscribers are supplied with the

information they require at the requested rate by a sufficient

number of alternative sources; otherwise an alarm is raised.

IT Service Management at ChemProvider remotely switches

energy-constrained publishers to a power-saving mode as long

as their data is not required (e.g., no active subscriptions or

many other active publishers already for the same container).

These tasks require additional runtime monitoring informa-

tion about the population and dynamics of the system that

is usually not available, as every participating party in the

scenario controls only a fraction of the decentralized network

infrastructure and does not want to share detailed monitoring

insights [8]. Aggregations for the whole system, however, can

be exchanged across company borders and provided by our

approach for the set of event types (E) currently handled:

subscriberCounte #subscribers active for e ∈ E (1)

publisherCounte #publishers active for e ∈ E (2)

publicationRatee #events/sec e ∈ E is published (3)

subscriptionRatee #events/sec e ∈ E is subscribed to (4)

We use these aggregations to define additional key perfor-

mance indicators (KPIs) for single publishers and subscribers

based on the set of event types e they publish (Pe ⊆ E) or

subscribe to (Se ⊆ E). For example, in our scenario ITSM

defines for each publisher j: the total number of subscribers

that publisher j is serving across all published types of

notifications (5), the relative importance or power of supply

(PoS) of publisher j by providing e (6), and the power of

demand (PoD) for e compared to the overall demand (7):

servedSubscribersj =

Pe∑

e

subscriberCounte (5)

rPoS e,j =
1

publisherCounte
(6)

PoDe =
subscriberCounte∑E
e subscriberCounte

(7)

IV. A DASHBOARD FOR RUNTIME MONITORING OF EBS

Our approach provides runtime monitoring information

about the population and dynamics of an EBS as described

in Sect. III-B. We have implemented the prototype3 of a

dashboard to provide a visual summary of the system state

by fusing runtime monitoring updates with historic data.

A. Dashboard design: data- and client-centric views

Our dashboard provides a data-centric view as well as

client-centric views for individual publishers and subscribers.

The data-centric EventDataTab summarizes supply and de-

mand for all active events and provides a view of the global

3https://www.dvs.tu-darmstadt.de/research/events/asia/

4444

Tablet
Browser

MySQL database

Data Feeds

Dashboard

EventDataTab

SubscriberDetailTab

PublisherDetailTab

SVGMapperDBStore

User

B

B B

B

JMSBridge

ActiveMQ

Mashzone
Server

ASIA Dashboard

A

B

DE

C

AS A

Fig. 5. Architecture of the dashboard prototype using ASIA, Software AG
Mashzone and Java enterprise technology.

state of the system. The client-centric PublisherDetailTabs and

SubscriberDetailTabs4 in turn provide drill-down views for

event types handled by a specific client.

In addition, an interactive graph representation of the known

network topology is provided that facilitates easy navigation

to specific publishers (diamond shape) or subscribers (oval

shape). Referring to our SCM example, this view might

be restricted to applications and message brokers operated

by a single company participating in large-scale distribution

networks.

An EventDataTab view shows monitoring updates delivered

on-the-fly about metrics (1)–(4) for each active event type e ∈
E. For each metric, additional historic data traces stored in the

back-end database can be visualized at the bottom of the tab.

Furthermore, we display system-wide metadata notifications

(pinpoints) with their timestamp as a news feed and as an

overlay over the historic data. This allows users to visually

check if specific events (e.g., outages, planned maintenance)

have impacted a given metric.

A PublisherDetailTab is available for each publisher that

is part of the network controlled by the operator of this

dashboard. It displays the additional KPIs (5)–(7) for the

types handled by this publisher instance, effectively providing

a drill-down view on the data available in EventDataTab.

Historic data traces can be visualized as well.

The upper and lower bounds reported by ASIA for each

metric can be used to implement custom and application-

specific tools for process control (e.g., using control or EWMA

charts) that trace the history of a metric and use thresholds to

trigger actions based on deviations from defined target values.

B. Architecture and implementation using Mashzone

The general architecture of our prototype consists of five

components, as illustrated in Fig. 5: updates reported by ASIA

about the state of the EBS are forwarded to the dashboard

by JMSBridge (A) using ActiveMQ as Java Message Service

4For the remainder of this section, we omit a detailed description of
SubscriberDetailTab as it corresponds to PublisherDetailTab.

(JMS) server (B). The Mashzone server (C) provides the views

described in Sect. IV-A on a web-based dashboard, and uses

JMS to receive runtime updates for metrics. The same updates

are stored in a separate MySQL database (D) by DBStore (E)

as traces for detailed ex-post analysis. Information about the

known system topology can be provided beforehand or on-

the-fly. We assume that topology information is available

beforehand as part of the asset metadata stored in governance

platforms. The interactive topology map is automatically gen-

erated from a graph representation provided in the open XML

format, GraphML, by SVGMapper.

JMSBridge is connected to ActiveMQ as a publisher and

to a message broker of the EBS as a listener, registering for

runtime updates about the global state of the system.

Note that we do not require our listener to connect to

a specific broker in the EBS—any broker of the system

implementing ASIA is able to deliver the required metrics.

The set of monitoring metrics to request together with

the required imprecision can be configured automatically or

manually. JMSBridge should register for updates about the

publisherCount of temperatureEvent(containerID =
50), while allowing for an imprecision of 10, for example.

JMSBridge is notified by ASIA whenever the value of

the requested monitoring metrics change to a degree that

is of interest to the listener (c.f., Sect. II). In Mashzone,

the Dashboard Layer used for visualization retrieves runtime

updates and historic data in a uniform way using Data Feeds.

The dashboard can be accessed by using web browsers in a

platform-independent way or by using platform-specific apps.

V. EVALUATION

We have evaluated our monitoring approach using the pro-

totype implemented within the distributed REDS open-source

middleware. As a workload-generator we have extended the

open-source SPEC Research benchmarking tool Fincos5 to

request and receive ASIA aggregation updates.

The experimental evaluation focusses on quality of infor-

mation (QoI) and quality of service (QoS) aspects of our

monitoring approach. We want to:

(A) assess how precisely updates on monitored metrics pro-

vided by ASIA reflect the current system state—given

different imprecisions, number of brokers involved, and

workloads that change over time to different degrees;

(B) gauge how well an EBS that applies ASIA adapts to large

numbers of clients and high-volume traffic in terms of

throughput and delay.

This complements the evaluation related to software engi-

neering presented in [9].

A. Precision of monitoring information (QoI)

We have defined a workload pattern for the rate at which

events are published per second (publicationRate). It is based

on the default workload provided by Fincos, focussing on a

rate changing over time. We chose the rate of publication for

5http://research.spec.org/tools/overview/fincos.html

4545

Imprecision allowed for monitoring updates

D
ev

ia
tio

n
fr

om
 tr

ue
 v

al
ue

0

10

20

30

i = 5 i = 10 i = 25 i = 50

max deviation for i = 5

max deviation for i = 10

max deviation for i = 25

Number of brokers involved

1 broker
5 brokers
10 brokers
15 brokers

Fig. 6. Precision of monitoring information stays within imprecision
boundaries: monitoring updates reported for publicationRate never differ
more than the defined imprecision (dashed red) from the true value; random
workloads, ten repetitions. Whisker end marks are the max/min value.

this part of the evaluation as it is a highly dynamic metric.

Fig. 3 shows the workload.

We use the same workload with increasing levels of im-

precision for publicationRate and vary the number of brokers

involved from one to 15 brokers. We measure (1) the degree to

which ASIA updates vary from the real system state; (2) the

number of monitoring updates that have to be processed by

the receiving client for each level of imprecision. Tests are

repeated ten times for each level of imprecision.

1) Deviation from the true value: Fig. 6 shows that moni-

toring updates reported by our approach do not differ from

the true value more than the imprecision set by the user

beforehand, independent of the number of brokers involved.

The box-plots show the deviation of the upper and lower

bounds reported for randomly generated variations of our

workload and changing levels of imprecision. Updates to

monitored metrics reported as lower and upper bounds always

enclose the true value as shown in Fig. 8 for two samples of

the same workload but with different imprecisions.

2) Reduction of updates: With increasing imprecision,

fewer updates are necessary to represent the system state as

ASIA does not report every change anymore. Fig. 7 shows

the percentage of events with piggybacked monitoring updates

that have to be processed by a client in proportion to the

total number of events processed for the same workload. With

increasing imprecision, system and client have to process

significantly fewer updates to monitoring metrics the client

is interested in, allowing it to free up local resources. A

low imprecision of 1 results in 46% of the total number of

processed events to be updates for monitoring metrics; an

imprecision of 5 already reduces this to 9% while the number

of necessary updates drops to less than 1% for an imprecision

of 10 (0.49%), 25 (0.18%) or 50 (0.06%).

B. Performance and scalability (QoS)

We compare the impact on throughput and delay caused by

our monitoring approach against the performance of an EBS

�

�

� � �0
10

20
30

40
50

Imprecision allowed for monitoring updates

U
pd

at
e

ov
er

he
ad

 (
in

 %
 o

f t
ot

al
 e

ve
nt

s
se

nt
)

i01 i05 i10 i25 i50

Fig. 7. Imprecision reduces monitoring overhead: reported monitoring
updates for the same workload but different levels of imprecision; plotted
in proportion to the total number of events processed.

without support for aggregation, also implemented in REDS.

To measure maximum throughput, we increase the publi-

cation rate while observing the rate and delay of messages

delivered to subscribers. Each client registers for monitoring

information about subscriberCount, publisherCount, subscrip-
tionRate and publicationRate for randomly selected events.

The delay for delivering notifications to subscribers is

a significant performance indicator in EBS. To measure

the delays for notifications and update propagation we use

two different aggregation functions: publisherCount and

publicationRate. These functions are the most challenging

for ASIA as update information is piggybacked on top of

messages, which are most frequent, and thus have a higher

likelihood of causing queueing at intermediate brokers. In

addition, we set the imprecision to zero—all updates are

immediately delivered to all interested clients.

We have deployed our approach on a testbed for distributed

systems consisting of 32 physical machines simulating a

distributed EBS with up to 1600 clients connected to a total

of 16 brokers. Each broker is deployed on a separate machine,

while all clients connected to a given broker are hosted on the

same machine. The average network latency is 0.2ms.

Fig. 9 shows our results. For both the bare EBS and for

ASIA, the throughput initially grows with the publication rate

(c.f., Fig. 9 (left)). We observe that the throughput saturates

at the same publication rate (i.e., 100 messages per second

per agent) and that the maximum throughput value is almost

identical for both systems (i.e., 160,000 messages per second

in total). Regarding delay, the measured values for an EBS

applying ASIA are comparable to those for a bare EBS, both

in terms of average and the 95th percentile of the delay. This

indicates that, even under an extreme workload and without

any imprecision, our approach does not introduce a noticeable

overhead to throughput and delay.

Our evaluation shows that we can provide precise runtime

monitoring information about the population and dynamics of

a decentralized EBS without compromising the performance of

the monitored system. Furthermore, our approach allows users

to significantly influence the number of monitoring updates

4646

0 20000 40000 60000 80000

0
20

40
60

80
10

0
12

0

Time elapsed (milliseconds)

E
ve

nt
s

pe
r

se
co

nd

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

True value
Monitoring update, upper bound
Monitoring update, lower bound

0 20000 40000 60000 80000

0
20

40
60

80
10

0
12

0

Time elapsed (milliseconds)

E
ve

nt
s

pe
r

se
co

nd

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

True value
Monitoring update, upper bound
Monitoring update, lower bound

Fig. 8. Monitoring information about publicationRate reported to the user as upper/lower bounds always describes the system state correctly. Increasing
imprecision results in fewer updates (gray lines) and a coarse representation; imprecision 5 (left) and 25 (right) are shown for the same workload (c.f., Fig.3).

 0

 10

 20

 30

 40

10-3 10-2 10-1 100 101 102 103

T
hr

ou
gh

pu
t (

K
 m

sg
/s

)

Publication Rate (K msg/s per client)

EBS w/o ASIA
EBS w/ ASIA

 0

 10

 20

 30

 40

 50

 60

Avg 95th Perc

P
ro

pa
ga

tio
n

D
el

ay
 (

m
s)

Publication Messages

EBS w/o ASIA
EBS w/ ASIA

Fig. 9. Maximum throughput for different publication rates (left) and the propagation delay for messages and aggregation updates (right).

they have to process by choosing higher levels of imprecision.

VI. RELATED WORK

Several solutions for monitoring large-scale SOA deploy-

ments rely on event-based approaches [17]. For example,

Michlmayr et al. use EBS inside VRESCo [20]; Smit et al.

use STORM6 to monitor heterogeneous cloud settings [24];

Guinea et al. [12] use SIENA7 for collecting runtime in-

formation about services; Agarwala et al. [1] use EBS to

process monitoring updates with QoS constraints. Monitor-

ing approaches for event-based systems, however, are rare.

ActiveMQ provides advisory messages to monitor the state

of a single queue or topic on a single broker. However, it

does not support key metrics such as publicationRate or

publisherCount. Lee et al. propose ViVa [18] to record

all exchanged messages between components of an EBS for

debugging and impact analysis. Differently from our approach,

which targets runtime governance based on real-time infor-

mation, ViVa relies on ex-post analysis of log files. Several

approaches provide information about the runtime state [25],

[19], [4] or stability [15], [5], [16], [23] of an EBS by relying

on a separate aggregation system. Astrolabe [25] provides

summarization based on user-defined aggregation functions,

implemented via a single logical aggregation tree on top

6https://storm.incubator.apache.org/
7http://www.inf.usi.ch/carzaniga/siena/

of an unstructured peer-to-peer gossip protocol. The authors

exemplify the use of Astrolabe in a topic-based EBS, but do

not discuss how aggregation is affected by changes in the

topology. SDIMS [26] extends distributed hash tables (DHTs)

to perform hierarchical aggregation based on attribute types

and names. STAR [15] adaptively sets the precision constraints

for processing aggregate queries. It is used by Jain et al. [16]

to provide network imprecision (NI), a consistency metric

for large-scale distributed systems that quantifies a system’s

stability in terms of currently reachable nodes and number

of updates that might have been repeatedly processed due

to network failures. In contrast to ASIA, such generic ag-

gregation systems are unable to leverage specific properties

of distributed EBS, such as overlay topologies or exchanged

messages. Aggregation trees may not match routing trees, re-

sulting in inefficiency and delayed adaptation. Finally, energy

efficient in-network aggregation is studied in wireless sensor

networks (WSNs) [6]. This is complementary to our work as

we do not compute aggregations within the energy-constrained

WSN but within the infrastructure of the enterprise software

system where energy efficiency is an issue on a different scale.

None of these systems support generic, application-specific

aggregation or imprecision within the broker network. Neither

are they able to piggyback information.

4747

VII. CONCLUSION, ONGOING AND FUTURE WORK

Event-based systems (EBS) complement service-oriented

architectures (SOA) and enable enterprise software systems

to react to real-time information. Runtime governance of EBS

has become a key issue, stressing the need for efficient and

effective runtime monitoring. In this paper, we described a

new approach to providing effective runtime monitoring for

decentralized EBS using the concept of application-specific

integrated aggregation (ASIA). Our approach monitors the

global state of the system and allows users to individually

balance precision and granularity of monitoring information

against the costs of providing it using imprecision. We pre-

sented a real-time dashboard visualizing the system state and

key performance indicators (KPI) for different participants. In

our evaluation we have shown that our approach provides pre-

cise and fine-grained monitoring information without affecting

the monitored system in terms of scalability and performance.

Ongoing and future work focusses on utilizing the moni-

toring information provided by our approach. We investigate

two complementary angles here: the integration into runtime

governance processes for EBS and its use as part of a self-

adapting, cost-aware transport service for distributed applica-

tions in multi-cloud deployments.

Runtime governance for EBS: Together with our industry

partners, we are working on integrating monitoring informa-

tion about EBS into runtime governance metrics by fusing

them with backend information that is stored in governance

platforms. The FIT metric [7], for example, identifies and

ranks hotspots in a SOA-based enterprise system landscape by

quantifying the criticality of relationships between services.

It deduces how important any given participating system is

for the whole application landscape based on its Function
(business criticality), Integration (impact on other participating

systems) and Traffic (actual usage). ASIA runtime monitoring

information can be used to model the components Integration
and Traffic specifically for EBS components when augmented

with metadata stored in governance platforms. For exam-

ple, the Integration of publisher j could be modeled using

servedSubscribersj and rPoS e,j weighted by the importance

of each event type e as defined by ITSM; Traffic could weight

the publication rate of j for e with the global rate that e is

produced and consumed by others. Extending the FIT metric

to EBS in general is part of future work, addressing the design

and calibration of the data model, weights and thresholds.

Self-adaptive, cost-aware transport: Having information

about the global state of a distributed system available is a

crucial prerequisite for building self-adaptive systems [22].

We use the real-time monitoring information provided by our

approach as part of a self-adaptive and cost-aware middle-

ware that optimizes the operation of distributed applications

deployed in multi-cloud environments [10].

Security and privacy aspects are important but orthogonal

to our approach and currently out of scope.

VIII. ACKNOWLEDGEMENTS

Funding by German Federal Ministry of Education and

Research (BMBF) under research grants 01 S12054 and

01 C12S01V.

REFERENCES

[1] S. Agarwala, Y. Chen, D. Milojicic, and K. Schwan. QMON: QoS-and
utility-aware monitoring in enterprise systems. In ICAC, 2006.

[2] S. Appel, S. Frischbier, T. Freudenreich, and A. Buchmann. Eventlets:
Components for the integration of event streams with SOA. In SOCA,
2012.

[3] A. Buchmann, H.-C. Pfohl, S. Appel, T. Freudenreich, S. Frischbier,
I. Petrov, and C. Zuber. Event-Driven services: Integrating production,
logistics and transportation. In SOC-LOG, 2010.

[4] A. K. Y. Cheung and H. A. Jacobsen. Publisher placement algorithms
in content-based publish/subscribe. In ICDCS, 2010.

[5] G. Cugola, M. Migliavacca, and A. Monguzzi. On adding replies to
publish-subscribe. In DEBS, 2007.

[6] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi. In-network aggregation
techniques for wireless sensor networks: A survey. IEEE Wireless
Commun., 14(2):70–87, 2007.

[7] S. Frischbier, A. Buchmann, and D. Pütz. FIT for SOA? Introducing
the F.I.T. – metric to optimize the availability of service oriented
architectures. In CSDM, 2011.

[8] S. Frischbier, M. Gesmann, D. Mayer, A. Roth, and C. Webel. Emer-
gence as competitive advantage – engineering tomorrow’s enterprise
software systems. In ICEIS, 2012.

[9] S. Frischbier, A. Margara, T. Freudenreich, P. Eugster, D. Eyers, and
P. Pietzuch. Aggregation for implicit invocations. In AOSD, 2013.

[10] S. Frischbier, A. Margara, T. Freundenreich, P. Eugster, D. Eyers, and
P. Pietzuch. McCAT: Multi-cloud Cost-aware Transport. In EuroSys
Poster Track, 2014.

[11] S. Frischbier, P. Pietzuch, and A. Buchmann. Managing expectations:
Runtime negotiation of information quality requirements in event-based
systems. In ICSOC, 2014.

[12] S. Guinea, G. Kecskemeti, A. Marconi, and B. Wetzstein. Multi-layered
monitoring and adaptation. In ICSOC, 2011.

[13] A. Hinze, K. Sachs, and A. Buchmann. Event-based applications and
enabling technologies. In DEBS, 2009.

[14] IBM. The smarter supply chain of the future: In-
sights from the global chief supply chain office study.
http://public.dhe.ibm.com/common/ssi/ecm/en/gbe03163usen/
GBE03163USEN.PDF, 2010.

[15] N. Jain, D. Kit, P. Mahajan, P. Yalagandula, M. Dahlin, and Y. Zhang.
STAR: Self-tuning aggregation for scalable monitoring. In VLDB, 2007.

[16] N. Jain, P. Mahajan, D. Kit, P. Yalagandula, M. Dahlin, and Y. Zhang.
Network imprecision: a new consistency metric for scalable monitoring.
In OSDI, 2008.

[17] K. Keeton, P. Mehra, and J. Wilkes. Do you know your IQ? a
research agenda for information quality in systems. ACM SIGMETRICS
Performance Evaluation Review, 37(3):26–31, 2010.

[18] Y. Lee, J. Bang, J. Garcia, and N. Medvidovic. ViVA: A visualization
and analysis tool for distributed event-based systems. In ICSE, 2014.

[19] S. Meng, S.R. Kashyap, C. Venkatramani, and L. Liu. Remo: Resource-
aware application state monitoring for large-scale distributed systems.
In ICDCS, 2009.

[20] A. Michlmayr, P. Leitner, F. Rosenberg, and S. Dustdar. Pub-
lish/subscribe in the VRESCo SOA runtime. In DEBS, 2008.

[21] P. Pietzuch, D. Eyers, S. Kounev, and B. Shand. Towards a common
API for publish/subscribe. In DEBS, 2007.

[22] H. Psaier and S. Dustdar. A survey on self-healing systems: approaches
and systems. Computing, 91(1):43–73, August 2010.

[23] J. Sacha, J. Napper, C. Stratan, and G. Pierre. Adam2: Reliable
distribution estimation in decentralised environments. In ICDCS, 2010.

[24] M. Smit, B. Simmons, and M. Litoiu. Distributed, application-level
monitoring for heterogeneous clouds using stream processing. In Future
Generation Computer Systems, 2013.

[25] R. Van Renesse, K. P. Birman, and W. Vogels. Astrolabe: A robust and
scalable technology for distributed system monitoring, management, and
data mining. ACM Trans. Comput. Syst., 21:164–206, May 2003.

[26] P. Yalagandula and M. Dahlin. A scalable distributed information
management system. In SIGCOMM, 2004.

4848

