
PERFORMANCE TUNING AND OPTIMIZATION OF J2EE APPLICATIONS
ON THE JBOSS PLATFORM

Samuel Kounev, Björn Weis and Alejandro Buchmann

Department of Computer Science
Darmstadt University of Technology, Germany

{skounev,weis,buchmann}@informatik.tu-darmstadt.de

Over the past couple of years the JBoss application server has established itself as a
competitive open-source alternative to commercial J2EE platforms. Although it has been
criticized for having poor scalability and performance, it keeps gaining in popularity and
market share. In this paper, we present an experience report with a deployment of the
industry-standard SPECjAppServer2004 benchmark on JBoss. Our goal is to study how
the performance of JBoss applications can be improved by exploiting different deployment
options offered by the JBoss platform. We consider a number of deployment alternatives
including different JVMs, different Web containers, deployment descriptor settings and data
access optimizations. We measure and analyze their effect on the overall system perfor-
mance in both single-node and clustered environments. Finally, we discuss some general
problems we encountered when running the benchmark under load.

1 Introduction

The JBoss Application Server is the world’s most pop-
ular open-source J2EE application server. Combin-
ing a robust, yet flexible architecture with a free open-
source license and extensive technical support from the
JBoss Group, JBoss has quickly established itself as a
competitive platform for e-business applications. How-
ever, like other open-source products, JBoss has often
been criticized for having poor performance and scala-
bility, failing to meet the requirements for mission-critical
enterprise-level services.

In this paper, we study how the performance of J2EE
applications running on JBoss can be improved by ex-
ploiting different deployment options offered by the plat-
form. We use SPECjAppServer2004 1 - the new indus-
try standard benchmark for measuring the performance
and scalability of J2EE application servers. However,
our goal is not to measure the performance of JBoss or
make any comparisons with other application servers.
We rather use SPECjAppServer2004 as an example of

1SPECjAppServer is a trademark of the Standard Performance
Evaluation Corp. (SPEC). The SPECjAppServer2004 results or find-
ings in this publication have not been reviewed by SPEC, therefore no
comparison nor performance inference can be made against any pub-
lished SPEC result. The official web site for SPECjAppServer2004 is
located at http://www.spec.org/jAppServer2004.

a realistic application, in order to evaluate the effect of
some typical JBoss deployment and configuration op-
tions on the overall system performance. The exact ver-
sion of JBoss Server considered is 3.2.3, released on
November 30, 2003. In addition to studying how JBoss
performance can be improved, we report on problems
we encountered during deployment of the benchmark
as well as some scalability issues we noticed when test-
ing under load.

The rest of the paper is organized as follows. We
start with an overview of SPECjAppServer2004, con-
centrating on the business domain and workload it mod-
els. We then describe the deployment environment in
which we deployed the benchmark and the experimen-
tal setting for our performance analysis. After this we
study a number of different configuration and deploy-
ment options and evaluate them in terms of the perfor-
mance gains they bring. We start by comparing several
alternative Web containers (servlet/JSP engines) that
are typically used in JBoss applications, i.e. Tomcat 4,
Tomcat 5 and Jetty. Following this, we evaluate the per-
formance difference when using local interfaces, as op-
posed to remote interfaces, for communication between
the presentation layer (Servlets/JSPs) and the business
layer (EJBs) of the application. We measure the perfor-
mance gains from several typical data access optimiza-

tions often used in JBoss applications and demonstrate
that the choice of Java Virtual Machine (JVM) has very
significant impact on the overall system performance.
Finally, we report on some scalability and reliability is-
sues we noticed when doing stress testing.

2 The SPECjAppServer2004 Benchmark

SPECjAppServer2004 is a new industry standard
benchmark for measuring the performance and scala-
bility of Java 2 Enterprise Edition (J2EE) technology-
based application servers. SPECjAppServer2004
was developed by SPEC’s Java subcommittee,
which includes BEA, Borland, Darmstadt Univer-
sity of Technology, Hewlett-Packard, IBM, Intel,
Oracle, Pramati, Sun Microsystems and Sybase.
It is important to note that even though some
parts of SPECjAppServer2004 look similar to
SPECjAppServer2002, SPECjAppServer2004 is
much more complex and substantially different from
previous versions of SPECjAppServer. It implements
a new enhanced workload that exercises all major
services of the J2EE platform in a complete end-to-end
application scenario.

2.1 SPECjAppServer2004 Business Model

The SPECjAppServer2004 workload is based on a dis-
tributed application claimed to be large enough and
complex enough to represent a real-world e-business
system [Sta04]. The benchmark designers have cho-
sen manufacturing, supply chain management, and or-
der/inventory as the "storyline" of the business problem
to be modeled. This is an industrial-strength distributed
problem, that is heavyweight, mission-critical and re-
quires the use of a powerful and scalable infrastructure.
The SPECjAppServer2004 workload has been specifi-
cally modeled after an automobile manufacturer whose
main customers are automobile dealers. Dealers use
a Web based user interface to browse the automobile
catalogue, purchase automobiles, sell automobiles and
track dealership inventory.

As depicted in Figure 1, SPECjAppServer2004’s
business model comprises five domains: customer do-
main dealing with customer orders and interactions,
dealer domain offering Web based interface to the
services in the customer domain, manufacturing do-
main performing "just in time" manufacturing opera-
tions, supplier domain handling interactions with ex-
ternal suppliers, and corporate domain managing all
customer, product, and supplier information. Figure 2
shows some examples of typical transactions run in
these domains (the dealer domain is omitted, since it
does not provide any new services on itself).

The customer domain hosts an order entry applica-
tion that provides some typical online ordering function-
ality. The latter includes placing new orders, retrieving
the status of a particular order or all orders of a given

Corporate
Domain

Customer
Domain

Dealer
Domain

Dealers

Suppliers Manufacturing
Domain

Supplier
Domain

Figure 1: SPECjAppServer2004 Business Model

CUSTOMER DOMAIN

Order Entry Application

 - Place Order
 - Get Order Status
 - Get Customer Status
 - Cancel Order

CORPORATE DOMAIN

Customer, Supplier and
Parts Information

 - Register Customer
 - Determine Discount

- Check Credit

MANUFACTURING DOMAIN

Manufacturing Application

 - Schedule Work Order
 - Update Work Order
 - Complete Work Order
 - Create Large Order

SUPPLIER DOMAIN

Interactions with
Suppliers

 - Select Supplier
 - Send Purchase Order
 - Deliver Purchase Order

Figure 2: SPECjAppServer2004 Business Domains

customer, canceling orders and so on. Orders for more
than 100 automobiles are called large orders.

The dealer domain hosts a Web application (called
dealer application) that provides a Web based interface
to the services in the customer domain. It allows cus-
tomers, in our case automobile dealers, to keep track of
their accounts, keep track of dealership inventory, man-
age a shopping cart, and purchase and sell automo-
biles.

The manufacturing domain hosts a manufacturing
application that models the activity of production lines in
an automobile manufacturing plant. There are two types
of production lines, namely planned lines and large or-
der lines. Planned lines run on schedule and produce
a predefined number of automobiles. Large order lines
run only when a large order is received in the customer
domain. The unit of work in the manufacturing domain
is a work order. Each work order is for a specific number
of automobiles of a certain model. When a work order is
created, the bill of materials for the corresponding type
of automobile is retrieved and the required parts are

taken out of inventory. As automobiles move through
the assembly line, the work order status is updated to
reflect progress. Once the work order is complete, it is
marked as completed and inventory is updated. When
inventory of parts gets depleted, suppliers need to be
located and purchase orders (POs) need to be sent out.
This is done by contacting the supplier domain, which is
responsible for interactions with external suppliers.

2.2 SPECjAppServer2004 Application Design

All the activities and processes in the five domains de-
scribed above are implemented using J2EE compo-
nents (Enterprise Java Beans, Servlets and Java Server
Pages) assembled into a single J2EE application that is
deployed in an application server running on the Sys-
tem Under Test (SUT). The only exception is for the in-
teractions with suppliers which are implemented using
a separate Web application called Supplier Emulator.
The latter is deployed in a Java-enabled Web server on
a dedicated machine. The supplier emulator provides
the supplier domain with a way to emulate the process
of sending and receiving purchase orders to/from sup-
pliers.

The workload generator is implemented us-
ing a multi-threaded Java application called
SPECjAppServer Driver . The latter is designed to
run on multiple client machines using an arbitrary
number of Java Virtual Machines to ensure that it
has no inherent scalability limitations. The driver is
made of two components - Manufacturing Driver and
DealerEntry Driver. The manufacturing driver drives
the production lines (planned lines and large order
lines) in the manufacturing domain and exercises the
manufacturing application. It communicates with the
SUT through the RMI (Remote Method Invocation)
interface. The DealerEntry driver emulates automobile
dealers that use the dealer application in the dealer
domain to access the services of the order entry
application in the customer domain. It communicates
with the SUT through HTTP and exercises the dealer
and order entry applications using three operations
referred to as business transactions:

1. Browse - browses through the vehicle catalogue

2. Purchase - places orders for new vehicles

3. Manage - manages the customer inventory (sells
vehicles and/or cancels open orders)

Each business transaction emulates a specific type
of client session comprising multiple round-trips to the
server. For example, the browse transaction navigates
to the vehicle catalogue Web page and then pages a
total of thirteen times, ten forward and three backwards.

A relational database management system (DBMS)
is used for data persistence and all data access oper-
ations use entity beans which are mapped to tables in

the SPECjAppServer database. Data access compo-
nents follow the guidelines in [KB02] to provide maxi-
mum scalability and performance.

Communication across domains in
SPECjAppServer2004 is implemented using asyn-
chronous messaging exploiting the Java Messaging
Service (JMS) and Message Driven Beans (MDBs). In
particular, the placement and fulfillment of large orders
(LOs), requiring communication between the customer
domain and the manufacturing domain, is implemented
asynchronously. Another example is the placement and
delivery of supplier purchase orders, which requires
communication between the manufacturing domain and
the supplier domain. The latter is implemented accord-
ing to the proposal in [KB02] to address performance
and reliability issues.

The throughput of the benchmark is driven by the
activity of the dealer and manufacturing applications.
The throughput of both applications is directly related to
the chosen Transaction Injection Rate. The latter deter-
mines the number of business transactions generated
by the DealerEntry driver, and the number of work or-
ders scheduled by the manufacturing driver per unit of
time. The summarized performance metric provided af-
ter running the benchmark is called JOPS and it de-
notes the average number of successful JAppServer
Operations Per Second completed during the measure-
ment interval.

3 Experimental Setting
In our experimental analysis, we use two different de-
ployment environments for SPECjAppServer2004, de-
picted on Figures 3 and 4, respectively. The first one is
a single-node deployment, while the second one is a
clustered deployment with four JBoss servers. Table 1
provides some details on the configuration of the ma-
chines used in the two deployment environments. Since
JBoss exhibits different behavior in clustered environ-
ment, the same deployment option (or tuning param-
eter) might have different effect on performance when
used in the clustered deployment, as opposed to the
single-node deployment. Therefore, we consider both
deployment environments in our analysis.

�����������	
�	

�������
���

�	�
�	������� ��������	
�	

����
�������

Figure 3: Single-Node Deployment

JBoss is shipped with three standard server configu-
rations: ’minimal’, ’default’ and ’all’. The ’default’ config-
uration is typically used in single-server environments,

�����������	
�	

�������
���

�
�
�

�	�
�	�������

��������	
�	��� ���	

����
�������

Figure 4: Clustered Deployment

Table 1: Deployment Environment Details

Node Description
Driver Machine SPECjAppServer Driver &

Supplier Emulator
2 x AMD XP2000+ CPU
2 GB, SuSE Linux 8

Single JBoss Server JBoss 3.2.3 Server
2 x AMD XP2000+ CPU
2 GB, SuSE Linux 8

JBoss Cluster Nodes JBoss 3.2.3 Server
1 x AMD XP2000+ CPU
1 GB, SuSE Linux 8

Database Server Popular commercial DBMS
2 x AMD XP2000+ CPU
2 GB, SuSE Linux 8

while the ’all’ configuration is meant for clustered envi-
ronments. We use the ’default’ configuration as a basis
for the single JBoss server in our single-node deploy-
ment, and the ’all’ configuration as a basis for the �
JBoss servers in our clustered deployment. For details
on the changes made to the standard server configura-
tions for deploying SPECjAppServer2004, the reader is
referred to [Wei04].

The driver machine hosts the SPECjAppServer2004
driver and the supplier emulator. All entity beans
are persisted in the database. The DBMS we use
runs under SQL isolation level of READ_COMMITTED
by default. For entity beans required to run un-
der REPEATABLE_READ isolation level, pessimistic
SELECT_FOR_UPDATE locking is used. This is
achieved by setting the row-locking option in the
�������������	
�� configuration file.

We adhere to the SPECjAppServer2004 Run Rules
for most of the experiments in our study. However, since
not all deployment options that we consider are allowed
by the Run Rules, in some cases we have to slightly de-
viate from the latter. For example, when evaluating the

performance of different entity bean commit options, in
some cases we assume that the JBoss server has ex-
clusive access to the underlying persistent store (stor-
ing entity bean data), which is disallowed by the Run
Rules. This is acceptable, since our aim is to evaluate
the impact of the respective deployment options on per-
formance, rather than to produce standard benchmark
results to be published and compared with other results.

In both the single-node and the clustered deploy-
ment, all SPECjAppServer2004 components (EJBs,
servlets, JSPs) are deployed on all JBoss servers. In
the clustered deployment, client requests are evenly
distributed over the JBoss servers in the cluster. For
RMI requests (from the manufacturing driver), load-
balancing is done automatically by JBoss. Unfortu-
nately, this is not the case for HTTP requests, since
JBoss is shipped without a load balancer for HTTP
traffic. Therefore, we had to modify the DealerEntry
driver to evenly distribute HTTP requests over the clus-
ter nodes. Although we could have alternatively used
a third-party load balancer, we preferred not to do this,
since its performance would have affected our analysis
whose main focus is on JBoss.

Another problem we encountered, was that access to
the ItemEnt entity bean was causing numerous dead-
lock exceptions. The ItemEnt bean represents items
in the vehicle catalogue and is accessed very fre-
quently. However, it was strange that it was causing
deadlocks, since the bean is only read and never up-
dated by the benchmark. Declaring the bean as read-
only alleviated the problem. After additionally configur-
ing it to use JBoss’ Instance-Per-Transaction Policy, the
problem was completely resolved. The Instance-Per-
Transaction Policy allows multiple instances of an entity
bean to be active at the same time [Sco03]. For each
transaction a separate instance is allocated and there-
fore there is no need for transaction based locking.

4 Performance Analysis
We now present the results from our experimental anal-
ysis. We look at a number of different JBoss deploy-
ment and configuration options and evaluate their im-
pact on the overall system performance. As a ba-
sis for comparison a standard out-of-the-box configura-
tion is used with all deployment parameters set to their
default values. Hereafter, we refer to this configura-
tion as Standard (shortened "Std"). For each deploy-
ment/configuration setting considered, its performance
is compared against the performance of the standard
configuration. Performance is measured in terms of the
following metrics:

� CPU utilization of the JBoss server(s) and the
database server

� Throughput of business transactions

� Mean response times of business transactions

By business transactions, here, we mean the three
dealer operations, Purchase, Manage and Browse (as
defined in section 2.2) and the WorkOrder transaction
running in the manufacturing domain.

It is important to note that the injection rate at which
experiments in the single-node environment are con-
ducted, is different from the injection rate for experi-
ments in the clustered environment. A higher injection
rate is used for cluster experiments, so that the four
JBoss servers are utilized to a reasonable level. Dis-
closing the exact injection rates at which experiments
are run, is not allowed by the SPECjAppServer2004 li-
cense agreement.

4.1 Use of Different Web Containers

JBoss allows a third-party Web container to be inte-
grated into the application server framework. The most
popular Web containers typically used are Tomcat [Apa]
and Jetty [Mor]. By default Tomcat 4.1 is used. As of
the time of writing, the integration of Tomcat 5 in JBoss
is still in its beta stage. Therefore when using it, nu-
merous debug messages are output to the console and
logged to files. This accounts for significant overhead
that would not be incurred in production deployments.
For this reason, we consider two Tomcat 5 configura-
tions, the first one out-of-the-box and the second one
with debugging turned off. It is the latter that is more
representative and the former is only included to show
the overhead of debugging.

Since the manufacturing application does not exer-
cise the Web container, it is not run in the experiments of
this section. Only the dealer application and the order-
entry application are run, so that the stress is put on
the benchmark components that exercise the Web con-
tainer.

We consider four different configurations:

1. Tomcat 4.1 (shortened Tom4)

2. Tomcat 5 out-of-the-box (shortened Tom5)

3. Tomcat 5 without debugging (shortened Tom5WD)

4. Jetty

4.1.1 Analysis in Single-node Environment

Comparing the four Web containers in the single-node
deployment, revealed no significant difference with re-
spect to achieved transaction throughput and average
CPU utilization. With exception of Tom5WD, in all con-
figurations, the measured CPU utilization was about
90% for the JBoss server and 45% for the database
server. The Tom5WD configuration exhibited 2% lower
CPU utilization both for the JBoss server and the
database server. As we can see from Figure 6, the
lower CPU utilization resulted in Tom5WD achieving the
best response times, followed by Jetty. It stands out

that the response time improvement was most signif-
icant for the Browse transaction. The reason for this
is that, while Purchase and Manage comprise only 5
round-trips to the server, Browse comprises a total of
17 round-trips each going through the Web container.
As mentioned, the effect on transaction throughput was
negligible. This was expected since, for a given injec-
tion rate, SPECjAppServer2004 has a target throughput
that is normally achieved unless there are some system
bottlenecks.

Figure 5: Legend for diagrams on Figures 6 and 7

Figure 6: Mean response times with different Web con-
tainers in the single-node environment

4.1.2 Analysis in Clustered Environment

The four Web containers exhibited similar behavior in
the clustered deployment. The only exception was for
the Tom5 configuration, which in this case was perform-
ing much worse compared to the other configurations.
The reason for this was that, all four servers in the
clustered deployment were logging their debug mes-
sages to the same network drive. Since, having four
servers, means four times more debug information to
be logged, the shared logging drive turned into a bottle-
neck. Figure 7 shows the response times of the three
business transactions. Note that this diagram uses a
different scale.

4.2 Use of Local vs. Remote Interfaces

In SPECjAppServer2004, by default, remote interfaces
are used to access business logic components (EJBs)
from the presentation layer (Servlets/JSPs) of the ap-
plication. However, since in both the single-node and
clustered environments, presentation components are
co-located with business logic components, one can
alternatively use local interfaces. This eliminates the

Figure 7: Mean response times with different Web con-
tainers in the clustered environment

overhead of remote network communication and is ex-
pected to improve performance. In this section, we eval-
uate the performance gains from using local interfaces
to access EJB components from Servlets and JSPs in
SPECjAppServer2004. Note that our standard configu-
ration (i.e. Std) uses remote interfaces.

4.2.1 Analysis in Single-node Environment

Figure 9 shows the transaction response times with re-
mote vs. local interfaces in the single-node deployment.
As we can see, using local interfaces led to response
times dropping by up to 35%. Again, most affected was
the Browse transaction. In addition to this, the use of
local interfaces led to lower CPU utilization of the JBoss
server. It dropped from 82% to 73%, when switching
from remote to local interfaces. Again, differences in
transaction throughputs were negligible.

Figure 8: Legend for diagrams on Figures 9 and 10

Figure 9: Mean response times with remote vs. local
interfaces in the single-node environment

4.2.2 Analysis in Clustered Environment

As expected, switching to local interfaces brought per-
formance gains also in the clustered deployment. How-

ever, in this case, the delays resulting from calls to the
EJB layer were small compared to the overall response
times. This is because in clustered environment, there
is additional load balancing and synchronization over-
head which contributes to the total response times. As
a result, delays from calls to the EJB layer constitute
smaller portion of the overall response times than in the
single-node case. Therefore, the performance improve-
ment from using local interfaces was also smaller than
in the single-node case. Figure 10 shows the measured
response times of business transactions. The effect on
transaction throughput and CPU utilization was negligi-
ble.

Figure 10: Mean response times with remote vs. local
interfaces in the clustered environment

4.3 Data Access Optimizations

In this section, we measure the effect of several data ac-
cess configuration options on the overall system perfor-
mance. The latter are often exploited in JBoss applica-
tions to tune and optimize the way entity beans are per-
sisted. We first discuss these options and then present
the results from our analysis.

4.3.1 Description of Considered Optimizations

Entity Bean Commit Options: JBoss offers four
entity bean persistent storage commit options, i.e. A,
B, C and D [Sco03, BR01]. While the first three are de-
fined in the EJB specification [Sun02], the last one is
a JBoss-specific feature. Below we quickly summarize
the four commit options:

� Commit Option A - the container caches entity bean
state between transactions. This option assumes
that the container has exclusive access to the per-
sistent store and therefore it doesn’t need to syn-
chronize the in-memory bean state from the per-
sistent store at the beginning of each transaction.

� Commit Option B - the container caches entity bean
state between transactions, however unlike option
A, the container is not assumed to have exclu-
sive access to the persistent store. Therefore, the
container has to synchronize the in-memory entity

bean state at the beginning of each transaction.
Thus, business methods executing in a transaction
context don’t see much benefit from the container
caching the bean, whereas business methods ex-
ecuting outside a transaction context can take ad-
vantage of cached bean data.

� Commit Option C - the container does not cache
bean instances.

� Commit Option D - bean state is cached between
transactions as with option A, but the state is peri-
odically synchronized with the persistent store.

Note that the standard configuration (i.e. Std) uses
commit option B for all entity beans. We consider
two modified configurations exploiting commit options
A and C, respectively. In the first configuration (called
CoOpA), commit option A is used. While in the single-
node deployment commit option A can be configured for
all SPECjAppServer2004 entity beans, doing so in the
clustered deployment, would introduce potential data
inconsistency. The problem is that changes to entity
data in different nodes of the cluster are normally not
synchronized. Therefore, in the clustered deployment,
commit option A is only used for the beans which are
never modified by the benchmark (the read-only beans),
i.e. AssemblyEnt, BomEnt, ComponentEnt, PartEnt,
SupplierEnt, SupplierCompEnt and POEnt.

The second configuration that we consider
(called CoOpC), uses commit option C for all
SPECjAppServer2004 entity beans.

Entity-Bean-With-Cache-Invalidation Option:
We mentioned that using commit option A in clustered
environment may introduce potential data inconsis-
tency. This is because each server in the cluster
would assume that it has exclusive access to the
persistent store and cache entity bean state between
transactions. Thus, when two servers update an entity
at the same time, the changes of one of them could
be lost. To address this problem, JBoss provides the
so-called cache invalidation framework [Sac03]. The
latter allows one to link the entity caches of servers
in the cluster, so that when an entity is modified, all
servers who have a cached copy of the entity are forced
to invalidate it and reload it at the beginning of next
transaction. JBoss provides the so-called "Standard
CMP 2.x EntityBean with cache invalidation" option
for entities that should use this cache invalidation
mechanism [Sac03]. In our analysis, we consider
a configuration (called EnBeCaIn), which exploits
this option for SPECjAppServer2004’ entity beans.
Unfortunately, in the clustered deployment, it was
not possible to configure all entity beans with cache
invalidation, since doing so led to numerous rollback
exceptions being thrown when running the benchmark.
The latter appears to be due to a bug in the cache

invalidation mechanism. Therefore, we could only apply
the cache invalidation mechanism to the read-only
beans, i.e. AssemblyEnt, BomEnt, ComponentEnt,
PartEnt, SupplierEnt, SupplierCompEnt and POEnt.
Since, read-only beans are never modified, this should
be equivalent to simply using commit option A without
cache invalidation. However, as we will see later,
results showed that there was a slight performance
difference.

Instance-Per-Transaction Policy: JBoss’ default
locking policy allows only one instance of an entity bean
to be active at a time. Unfortunately, the latter often
leads to deadlock and throughput problems. To address
this, JBoss provides the so-called Instance Per Transac-
tion Policy, which eliminates the above requirement and
allows multiple instances of an entity bean to be active
at the same time [Sco03]. To achieve this, a new in-
stance is allocated for each transaction and it is dropped
when the transaction finishes. Since each transaction
has its own copy of the bean, there is no need for trans-
action based locking.

In our analysis, we consider a configuration (called
InPeTr), which uses the instance per transaction policy
for all SPECjAppServer2004 entity beans.

No-Select-Before-Insert Optimization: JBoss
provides the so-called No-Select-Before-Insert entity
command, which aims to optimize entity bean create
operations [Sco03]. Normally, when an entity bean
is created, JBoss first checks to make sure that no
entity bean with the same primary key exists. When
using the No-Select-Before-Insert option, this check is
skipped. Since, in SPECjAppServer2004 all primary
keys issued are guaranteed to be unique, there is
no need to perform the check for duplicate keys. To
evaluate the performance gains from this optimiza-
tion, we consider a configuration (called NoSeBeIn),
which uses the No-Select-Before-Insert option for all
SPECjAppServer2004 entity beans.

Sync-On-Commit-Only Optimization: Another
optimization typically used is the so-called Sync-On-
Commit-Only container configuration option. It causes
JBoss to synchronize changes to entity beans with the
persistent store, only at commit time. Normally, dirty
entities are synchronized whenever a finder is called.
When using Sync-On-Commit-Only, synchronization
is not done when finders are called, however it is still
done after deletes/removes, to ensure that cascade
deletes work correctly. We consider a configuration
called SyCoOnly , in which Sync-On-Commit-Only is
used for all SPECjAppServer2004 entity beans.

Prepared Statement Cache: In JBoss, by default,
prepared statements are not cached. To improve perfor-

mance one can configure a prepared statement cache
of an arbitrary size [Sco03]. We consider a configuration
called PrStCa, in which a prepared statement cache of
size 100 is used.

In summary, we are going to compare the following
configurations against the standard (Std) configuration:

1. Commit Option A (CoOpA)

2. Commit Option C (CoOpC)

3. Entity Beans With Cache Invalidation (EnBeCaIn)

4. Instance Per Transaction Policy (InPeTr)

5. No-Select-Before-Insert (NoSeBeIn)

6. Sync-On-Commit-Only (SyCoOnly)

7. Prepared Statement Cache (PrStCa)

4.3.2 Analysis in Single-node Environment

Figure 12 shows the average CPU utilization of the
JBoss server and the database server under the differ-
ent configurations in the single-node environment. Fig-
ure 13 shows the response times of business transac-
tions. All configurations achieved pretty much the same
transaction throughputs with negligible differences.

As we can see, apart from the three configurations
CoOpA, EnBeCaIn and PrStCa, all other configurations
had similar performance. As expected, configurations
CoOpA and EnBeCaIn had identical performance, since
in a single-node environment there is practically no dif-
ference between them. Caching entity bean state with
commit option A, resulted in 30 to 60 percent faster re-
sponse times. Moreover, the CPU utilization dropped
by 20% both for the JBoss server and the database
server. The performance gains from using a prepared
statement cache were even greater, i.e. the database
utilization dropped from 47% to only 18%!

Figure 11: Legend for diagrams on Figures 12, 13, 14
and 15

4.3.3 Analysis in Clustered Environment

Figure 14 shows the average CPU utilization of the
JBoss server and the database server under the differ-
ent configurations in clustered environment. Figure 15
shows the response times of business transactions. As

Figure 12: CPU utilization under different configurations
in the single-node environment

Figure 13: Mean response times under different config-
urations in the clustered environment

usual, all configurations achieved pretty much the same
transaction throughputs with negligible differences.

Figure 14: CPU utilization under different configurations
in the clustered environment

As we can see, the performance gains from caching
entity bean state with commit option A (configurations
CoOpA and EnBeCaIn), were not as big as in the single-
node deployment. This was expected since, as dis-
cussed earlier, in this case only the read-only beans
could be cached. It came as a surprise, however, that
there was a difference between simply using commit
option A for read-only beans (CoOpA), as opposed to
using it with the cache invalidation option (EnBeCaIn).
We didn’t expect to see a difference here, since cached
beans, being read-only, were never invalidated. There

Figure 15: Mean response times under different config-
urations in the clustered environment

was a slight difference, however, not just in CPU uti-
lization, but also in transaction response times, which in
most cases were slightly better for EnBeCaIn. Again,
the performance gains from having a prepared state-
ment cache were considerable, i.e. the database uti-
lization dropped from 78% to only 27%!

4.4 Use of Different JVMs

In this section, we demonstrate that the underlying JVM
has a very significant impact on the performance of
JBoss applications. We compare the overall perfor-
mance of our SPECjAppServer2004 deployments un-
der two different popular JVMs. Unfortunately, we can-
not disclose the names of these JVMs, as this is pro-
hibited by their respective license agreements. We will
instead refer to them as "JVM A" and "JVM B". The
goal is to demonstrate that changing the JVM on which
JBoss is running, may bring huge performance gains
and therefore it is worth considering this in real-life de-
ployments.

Figures 17 and 19 show the average CPU utiliza-
tion of the JBoss server and the database server un-
der the two JVMs in the single-node and clustered en-
vironment, respectively. Response times are shown in
Figures 18 and 20. As evident, in both environments,
JBoss runs much faster with the second JVM: response
times are up to 55% faster and the CPU utilization of the
JBoss server is much lower.

Figure 16: Legend for diagrams on Figures 17, 18, 19
and 20

5 JBoss Behavior under Heavy Load

While JBoss performance can be boosted significantly
by tuning configuration parameters and optimizing the
deployment environment, our experiments under heavy
load, showed that there is still a lot to be desired as
far as reliability and scalability are concerned. Trying to

Figure 17: CPU utilization under the two JVMs in the
single-node environment

Figure 18: Mean response times under the two JVMs in
the single-node environment

Figure 19: CPU utilization under the two JVMs in the
clustered environment

raise the injection rate, so that JBoss server is close to
saturated, led to numerous transaction aborts and sys-
tem exceptions (JBoss-specific), being thrown by the
container. This was happening both in the single-node
and clustered environments. Moreover, in the clustered
environment, adding additional servers would not re-
solve the problem. For these reasons, we were not able
to scale out our deployment. Note that testing with a
popular commercial application server in the same en-
vironment did not lead to any scalability problems.

Another problem was the Web container which
proved to be a serious bottleneck. This was observed
when steadily raising the injection rate and monitor-

Figure 20: Mean response times under the two JVMs in
the clustered environment

ing the throughput of the dealer and manufacturing do-
mains. While the throughput of the manufacturing do-
main was increasing with the injection rate, the through-
put of the dealer domain quickly reached its peak point
and started to drop.

6 Summary and Conclusions

In this paper, we studied how the performance of
JBoss applications can be improved by exploiting dif-
ferent deployment and configuration options offered by
the JBoss platform. We used the industry standard
SPECjAppServer2004 benchmark as a basis for our ex-
perimental analysis.

Comparing the three alternative Web containers
Tomcat 4.1, Tomcat 5 and Jetty, revealed no significant
performance differences. Tomcat 5 (with debugging
turned off) and Jetty, turned out to be slightly faster than
Tomcat 4.1. On the other hand, using local interfaces
to access business logic components from the presen-
tation layer, brought significant performance gains. In-
deed, response times dropped by up to 35% and the uti-
lization of JBoss server dropped by 10%. Caching entity
beans with commit option A (with and without cache in-
validation), resulted in 30 to 60 percent faster response
times and 20% lower CPU utilization, both for the JBoss
server and the database server. The performance gains
from caching prepared statements were even greater.
The other data access optimizations considered, led to
only minor performance improvements. However, we
must note here that, being an application server bench-
mark, SPECjAppServer2004 places the emphasis on
the application server (transaction processing) rather
than the database. We expect the performance gains
from data access optimizations to be more significant, in
applications where the database is the bottleneck. Fur-
thermore, in our analysis we considered optimizations
one at a time. If all of them were to be exploited at the
same time, their cumulative effect would obviously lead
to more significant performance improvements. Finally,
we demonstrated that switching to a different JVM may
improve JBoss performance by up to 60%.

On the negative side, our experience with JBoss

showed that some important services often used in
J2EE applications, were either not supported at all
(for e.g. load balancing for HTTP requests) or
they were supported, but trying to use them with
SPECjAppServer2004 led to problems most likely due
to bugs in JBoss (for e.g. the ItemEnt caching, the
cache invalidation mechanism, optimistic locking with
"modified" locking strategy, etc). We hope that these
issues, as well as the scalability issues mentioned ear-
lier, will be addressed in the next version of JBoss.

Acknowledgments
We acknowledge the many fruitful discussions with our
colleague Christofer Dutz from Darmstadt University of
Technology.

References
[Apa] Apache Software Foundation. Jakarta Tomcat.

�����������	������	���������.

[BR01] P. Brebner and S. Ran. Entity Bean A, B, C’s:
Enterprise Java Beans Commit Options and
Caching. In Proc. of IFIP/ACM Intl Conf. on
Distr. Systems Platforms - Middleware, 2001.

[KB02] S. Kounev and A. Buchmann. Improving Data
Access of J2EE Applications by Exploiting
Asynchronous Processing and Caching Ser-
vices. In Proc. of the 28th Intl Conference on
Very Large Data Bases - VLDB2002, 2002.

[Mor] Mort Bay Consulting. Jetty Java HTTP Servlet
Server. ��������	������	���.

[Sac03] Sacha Labourey and Bill Burke. JBoss Cluster-
ing. The JBoss Group, 2520 Sharondale Dr.,
Atlanta, GA 30305 USA, 6th edition, 2003.

[Sco03] Scott Stark. JBoss Administration and Devel-
opment. The JBoss Group, 2520 Sharondale
Dr., Atlanta, GA 30305 USA, 3th edition, 2003.

[Sta04] Standard Performance Evaluation Corpora-
tion (SPEC). SPECjAppServer2004 Docu-
mentation. Specification, Apr 2004. ���

�����	����	������������������.

[Sun02] Sun Microsystems, Inc. Enterprise JavaBeans
2.0. Specification, 2002. ���������	���	

����������������.

[Wei04] Bjoern Weis. Performance Optimierung von
J2EE Anwendungen auf der JBoss Plattform.
Master thesis, Darmstadt University of Tech-
nology, March 2004. In German.

