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Abstract

In this paper 1 we show how Queueing Petri
Net (QPN) models can be exploited for per-
formance analysis of distributed e-business
systems. We study a real-world applica-
tion and demonstrate the benefits, in terms
of modelling power and expressiveness, that
QPN models provide over conventional mod-
elling paradigms such as Queueing Networks
and Petri Nets. As shown, QPNs facilitate
the integration of both hardware and soft-
ware aspects of system behavior in the same
model. In addition to hardware contention
and scheduling strategies, using QPNs one can
easily model simultaneous resource possession,
synchronization, blocking and contention for
software resources. By validating the mod-
els presented through measurements, we show
that they are not just powerful as a specifi-
cation mechanism, but are also very powerful
as a performance analysis and prediction tool.
However, currently available tools and tech-
niques for QPN analysis are limited. Improved
solution methods, which enable larger mod-
els to be analyzed, need to be developed. By
demonstrating the power of QPNs as a mod-
elling paradigm in realistic scenarios, we hope
to motivate further research in this area.

1 Introduction

Modern e-business applications are often based on
highly distributed, multi-tiered architectures compris-
ing multiple components deployed in a heterogeneous
environment. The inherent complexity of the latter

1This work was partially funded by BEA Systems, Inc. as
part of the project ”Capacity Planning and Performance Anal-
ysis of J2EE Applications and Web Services” and the Deutsche
Forschungsgemeinschaft (DFG) as part of the PhD program
”Enabling Technologies for E-Commerce” at Darmstadt Univer-
sity of Technology.

makes it extremely difficult for system developers to
estimate the size and capacity of the deployment envi-
ronment needed to guarantee that Service Level Agree-
ments (SLAs) are met. Developers are often faced with
questions such as the following:

1. What are the maximum load levels that the sys-
tem will be able to handle in the production en-
vironment?

2. What would the average response time, through-
put and resource utilization be under the expected
workload?

3. How would performance change if load is in-
creased? Does the system scale?

4. Which components have the largest effect on the
overall system performance and are they potential
bottlenecks?

5. What hardware and software resources are needed
to guarantee that SLAs are met?

The above are typical capacity planning questions
[10], whose answers are all, but straightforward to find.
Instead of seeking concrete answers, deployers often
rely on their intuition, ad hoc procedures, expert opin-
ions or general rules of thumb. As a result, the over-
all system capacity is unknown and capacity planning
and procurement are done without a clearly defined
methodology. Clearly, the issues of sizing and capac-
ity planning need to be addressed in a more formal and
systematic way if performance is to be guaranteed.
Different approaches have been proposed in the

literature for performance analysis and prediction.
Most of them exploit analytical models whose anal-
ysis is based on Markov Theory [6]. Queueing Net-
works (QNs) [14] and Generalized Stochastic Petri
Nets (GSPNs) [5] are among the most popular mod-
elling formalisms that have been used in the past
decade. However, as argued in [1], both have some
serious short-comings. While Queueing Networks pro-
vide a very powerful mechanism for modelling resource
contention and scheduling strategies, they are not as



suitable for representing blocking and synchronization
of processes. Generalized Stochastic Petri Nets, on
the other hand, lend themselves very well to modelling
blocking and synchronization aspects, but have diffi-
culty in representing scheduling strategies. Bause [1]
has proposed a new modelling formalism called Queue-
ing Petri Nets (QPNs) that combines Queueing Net-
works and Petri Nets into a single formalism and elim-
inates the above disadvantages. QPNs allow queues to
be integrated into places of Petri Nets. This enables
the modeler to easily represent scheduling strategies
and brings the benefits of Queueing Networks into the
world of Petri Nets. In [7] it is shown that QPNs have
greater expressive power than QNs, Extended QNs and
SPNs. [4] further shows how this could be exploited
in order to integrate software and hardware perfor-
mance models using Hierarchical QPNs. QPNs take
model expressiveness to a completely new level and
allow much more complex aspects of system behavior
to be modelled. However, this modelling power has
hardly been exploited in the last years and very few,
if any, practical applications have been reported. The
latter is largely due to the fact that only a few meth-
ods have been developed for the analysis of QPNs and
they all have some inherent limitations. As of the mo-
ment, most methods available are based on Markov
Chains which suffer the well known state space explo-
sion problem. This imposes a limit on the size of the
models that can be analyzed and is a major hurdle to
the practical application of QPNs.

Even though the state space explosion problem is
a great barrier, we believe that there is yet a signif-
icant potential in QPNs that hasn’t been exploited.
In our opinion, QPNs lend themselves very well to
modelling modern e-business systems based on dis-
tributed component architectures. In this paper we
demonstrate this by looking at a real-world e-business
application and showing how QPN models could be
exploited for performance analysis and prediction in
capacity planning studies. We focus on the benefits,
in terms of modelling power and expressiveness, that
QPNs provide over conventional modelling paradigms
such as Queueing Networks and Petri Nets. The ap-
plication we have chosen is part of the newly released
SPECjAppServer2001 benchmark [12], which repre-
sents a heavy-duty business-to-business e-commerce
workload. Our goal is to demonstrate the viability of
QPNs as a modelling paradigm and motivate further
research on techniques for their analysis.

2 Conventional Modelling Paradigms

Before we look at the QPN modelling approach we in-
clude a brief introduction to the conventional Queue-
ing Network (QN) and Petri Net (PN) modelling
paradigms from which the QPN formalism originates.

2.1 Queueing Networks

A queueing network consists of a set of interconnected
queues. Each queue represents a service station, which
serves requests (also called jobs) sent by customers. A
service station consists of one or more servers and a
waiting area which holds requests waiting to be served.
When a request arrives at a service station, its service
begins immediately if a free server is available. Other-
wise, the request is forced to wait in the waiting area
or the service of another request is preempted in case
the arriving request has a higher priority. The time be-
tween successive request arrivals is called interarrival
time. Each request demands a certain amount of ser-
vice, which is specified by the length of time a server is
occupied serving it, i.e the service time. The queueing
delay is the amount of time the request waits in the
waiting area before its service begins. The response
time is the total amount of time the request spends at
the service station, i.e. the sum of the queueing delay
and the service time.
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Figure 1: A Basic Queueing Network

Figure 1 shows a basic queueing network with two
queues, i.e. service stations. Arriving requests first
visit service station 1, which has two servers (repre-
senting CPUs). After requests are served by one of
the servers, they move to service station 2 (represent-
ing a disk device) with probability p1 or leave the net-
work with probability p2. Requests completing service
at station 2 return back to station 1. The intercon-
nection of queues in a queueing network is described
by the paths requests may take which are specified by
routing probabilities. A request might visit a service
station multiple times while it circulates through the
network. The total amount of service time required,
over all visits to the station, is called service demand
of the request at the station. Requests are usually
grouped into classes with all requests in the same class
having the same service demands.

The algorithm which determines the order in which
requests are served at a service station is called
scheduling strategy (or scheduling/queueing discipline)
[6]. Some typical scheduling strategies are:

- FCFS (First-Come-First-Served): Requests



are served in the order in which they arrive. This
strategy is typically used for queues representing
I/O devices.

- LCFS (Last-Come-First-Served): The request
that arrived last is served next.

- PS (Processor-Sharing) All requests are as-
sumed to be served simultaneously with the server
speed being equally divided among them. This
strategy is typically used for modelling CPUs.

- IS (Infinite-Server): There is an ample number
of servers so that no queue ever forms. Service
stations with IS scheduling strategy are often called
delay resources or delay servers.

A queueing network in which requests arrive from
an external source, get served in the network and then
depart is said to be open, for e.g. the queueing network
in Figure 1. A queueing network in which there is no
external source of requests and no departures is said to
be closed. In a closed queueing network it is assumed
that the number of requests of each class circulating
in the network is constant. It is also possible that a
queueing network is open for some request classes and
closed for others in which case the queueing network
is called mixed.
Typical measures of interest for a queueing network

include queue lengths, response times, throughput (the
number of requests served per unit of time) and uti-
lization (the fraction of time that a service station is
busy). A relationship, known as Little’s Law [10], re-
lates the throughput X of a service station with the
average number of requests N in it and their average
response time R. The relation is shown in Equation 1
and holds under the condition that the service station
is in steady state, i.e. the number of requests arriv-
ing per unit of time is equal to the number of those
completing service.

N = X .R (1)

Another relationship that we will use later, relates
the service time S of requests at a station with its
utilization U and throughput X . This relationship
is known as Utilization Law [10] and is shown in
Equation 2.

U = X .S (2)

Queueing Networks provide a very powerful mech-
anism for modelling hardware contention (contention
for CPU time, disk access and other hardware re-
sources). A number of efficient analysis methods have
been developed for certain classes of queueing net-
works, which enable models of realistic size and com-
plexity to be analyzed. However, queueing networks
are not as suitable for modelling software contention
(contention for processes, threads, database connec-
tions, locks, latches and other software resources), as

well as blocking, synchronization and simultaneous re-
source possession. Even though extensions of queue-
ing networks, such as Extended Queueing Networks
[6], provide some limited support for modelling soft-
ware contention and synchronization aspects they are
rather restrictive and inaccurate. For further details
on queueing networks we refer the reader to [6].

2.2 Petri Nets

Petri Nets were introduced in 1962 by Carl Adam
Petri. An ordinary Petri Net (also called Place-
Transition Net) is a bipartite directed graph composed
of places, drawn as circles, and transitions, drawn as
bars. A formal definition [5] is given below:

Definition 1 (PN) An ordinary Petri Net (PN) is a
5-tuple PN = (P, T, I−, I+,M0), where:

1. P is a finite and non-empty set of places,

2. T is a finite and non-empty set of transitions,

3. P ∩ T = ∅,

4. I−, I+ : P × T → N0 are called backward and
forward incidence functions, respectively,

5. M0 : P → N0 is called initial marking.

The incidence functions I− and I+ specify the
interconnection between places and transitions. If
I−(p, t) > 0, an arc leads from place p to transition
t and place p is called an input place of the transition.
If I+(p, t) > 0, an arc leads from transition t to place
p and place p is called an output place of the transi-
tion. The incidence functions assign natural numbers
to arcs, which we call weights of the arcs. When each
input place of transition t contains at least as many
tokens as the weight of the arc connecting it to t, the
transition is said to be enabled. An enabled transition
may fire, in which case it destroys tokens from its in-
put places and creates tokens in its output places. The
amounts of tokens destroyed and created are specified
by the arc weights. The initial arrangement of tokens
in the net (called marking) is given by the function
M0 which specifies how many tokens are contained in
each place. When a transition fires, the marking may
change. Figure 2 illustrates this using a basic petri net
with 4 places and 2 transitions. The petri net is shown
before and after firing of transition t1, which destroys
one token from place p1 and creates one token in place
p2.
Different extensions to ordinary Petri Nets have

been developed in order to increase the mod-
elling convenience and/or the modelling power.
Colored Petri Nets (CPNs) introduced by K. Jensen
[8] are one such extension. The latter allow a type
(color) to be attached to a token. A color function C
assigns a set of colors to each place. This set speci-
fies the types of tokens that can reside in the place.
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Figure 2: An Ordinary Petri Net before and after firing
transition t1

In addition to introducing token colors, CPNs also al-
low transitions to fire in different modes (transition
colors). The color function C assigns a set of colors
to each transition and incidence functions are defined
on a per color basis. A formal definition of CPNs [5]
follows:

Definition 2 (CPN) A Colored Petri Net (CPN) is
a 6-tuple CPN = (P, T,C, I−, I+,M0), where:

1. P is a finite and non-empty set of places,

2. T is a finite and non-empty set of transitions,

3. P ∩ T = ∅,

4. C is a color function defined from P ∪ T into
non-empty sets,

5. I− and I+ are the backward and forward
incidence functions defined on P × T ,
such that I−(p, t), I+(p, t) : C(t)→ C(p)MS,
∀(p, t) ∈ P × T 2

6. M0 is a function defined on P describing the ini-

tial marking such that M0(p) ∈ C(p)MS ,∀p ∈ P

Other extensions to ordinary Petri Nets allow tem-
poral (timing) aspects to be integrated into the net
description [5]. In particular, Stochastic Petri Nets
(SPNs) attach an exponentially distributed firing de-
lay to each transition, which specifies the time the
transition waits after being enabled before it fires.
Generalized Stochastic Petri Nets (GSPNs) allow two
types of transitions to be used: immediate and timed.
Once enabled, immediate transitions fire in zero time.
If several immediate transition are enabled at the same
time, the next transition to fire is chosen based on
firing weights (probabilities) assigned to the transi-
tions. Timed transitions fire after a random exponen-
tially distributed firing delay as in the case of SPNs.
The firing of immediate transitions always has priority
over that of timed transitions. A formal definition of
GSPNs [5] follows:

Definition 3 (GSPN) A GSPN is a 4-tuple
GSPN = (PN, T1, T2,W ), where:

1. PN = (P, T, I−, I+,M0) is the underlying ordi-
nary Petri Net,

2The subscript MS denotes multisets. C(p)MS denotes the
set of all finite multisets of C(p).

2. T1 ⊆ T is the set of timed transitions, T1 6= ∅,

3. T2 ⊂ T is the set of immediate transitions,
T1 ∩ T2 = ∅, T = T1 ∪ T2,

4. W = (w1, ..., w|T |) is an array whose entry

wi ∈ R
+

• is a (possibly marking dependent) rate of a
negative exponential distribution specifying
the firing delay, when transition ti is a timed
transition, i.e. ti ∈ T1 or

• is a (possibly marking dependent) firing
weight, when transition ti is an immediate
transition, i.e. ti ∈ T2.

By combining definitions 2 and 3, Colored Gener-
alized Stochastic Petri Nets (CGSPNs) can be defined
[5].
Petri Nets are a very powerful tool for both qualita-

tive and quantitative system analysis. Unlike queue-
ing networks, they easily lend themselves to modelling
blocking and synchronization aspects. However, Petri
Nets have the disadvantage that they do not pro-
vide any means for direct representation of scheduling
strategies [7]. The attempts to eliminate this disad-
vantage have led to the emergence of Queueing Petri
Nets (QPNs).

3 The QPN Modelling Formalism

In the following we give a brief introduction to the
QPN formalism based on [1].

3.1 Basic Queueing Petri Nets

The main idea in the creation of the QPN formalism
was to add queueing and timing aspects to the places
of Colored Generalized Stochastic Petri Nets [5]. This
is done by allowing queues (service stations) to be in-
tegrated into places of CGSPNs. A place of a CGSPN
which has an integrated queue is called a queueing
place and consists of two components, the queue and a
depository for tokens which have completed their ser-
vice at the queue. This is depicted in Figure 3.
The behavior of the net is as follows: tokens, when

fired into a queueing place by any of its input tran-
sitions, are inserted into the queue according to the
queue’s scheduling strategy. Tokens in the queue are
not available for output transitions of the place. After
completion of its service, a token is immediately moved
to the depository, where it becomes available for out-
put transitions of the place. This type of queueing
place is called a timed queueing place. In addition to
timed queueing places, QPNs also introduce immediate
queueing places, which allow pure scheduling aspects
to be described. Tokens in immediate queueing places
can be viewed as being served immediately. Scheduling
in such places has priority over scheduling/service in
timed queueing places and firing of timed transitions.
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Figure 3: A Queueing Place and its Shorthand Nota-
tion

The rest of the net behaves like a normal CGSPN. An
enabled timed transition fires after an exponentially
distributed delay according to a race policy. Enabled
immediate transitions fire according to relative firing
frequencies and their firing has priority over that of
timed transitions. We now give a formal definition of
a QPN and then present an example of a QPN model.

Definition 4 (QPN) A Queueing Petri Net (QPN)
is a 8-tuple QPN = (P, T,C, I−, I+,M0, Q,W ),
where:

1. CPN = (P, T,C, I−, I+,M0) is the underlying
Colored Petri Net

2. Q = (q1, ..., q|P |) is an array whose entry qi

• denotes the description of a queue taking all
colors of C(P ) into consideration, if pi is a
timed place or

• equals the keyword untimed, if pi is an un-
timed place.

3. W = (w1, ..., w|T |) is an array of functions
whose entry wi is defined on C(ti) and
∀c ∈ C(ti) : wi(c) is

• the description of a probability distribution
function specifying the firing delay due to
color c ∈ C(ti), if transition ti is a timed
transition or

• is a weight specifying the relative firing fre-
quency due to color c ∈ C(ti), if transition ti
is an immediate one.

Example 1 (QPN) Figure 4 shows an example of a
QPN model of a central server system with memory
constraints based on [5]. Place p2 represents several
terminals, where users start jobs (modelled with
tokens of color ”o”) after a certain thinking time.
These jobs request service at the CPU (represented

by the -/C/1-PS queue, where C stands for Coxian
distribution) and two disk subsystems (represented by
the -/C/1-FCFS queues). To enter the system each
job has to allocate a certain amount of memory. For
simplicity, the amount of memory needed by each
job is assumed to be the same, which is represented
by a token of color ”m” on place p1. According to
definition 4 we have the following:

QPN = (P, T,C, I−, I+,M0, Q,W ) where

• CPN = (P, T,C, I−, I+,M0) is the underlying
Colored Petri Net as depicted in Figure 4

• Q = (untimed,−/M/∞− IS,−/M/1− PS,
untimed,−/M/1− FCFS,−/M/1− FCFS)

• W = (w1, ..., w|T |), where all transitions are im-
mediate and ∀c ∈ C(ti) : wi(c) := 1, since we
want their firings to be equally likely.
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Figure 4: A QPN Model of a Central Server System
with Memory Constraints (based on [5])

3.2 Hierarchical Queueing Petri Nets

As already mentioned, the main hurdle to the quan-
titative analysis of QPNs is the fact that most anal-
ysis techniques available are based on Markov Chains
and are therefore susceptible to the state space explo-
sion problem. More specifically, as one increases the
number of queues and tokens in a QPN, the size of
the state space of the underlying Markov Chain grows
exponentially and quickly exceeds the capacity of to-
day’s computers. This imposes a limit on the size
and complexity of the models that are analyzable. An
attempt to alleviate this problem was the introduc-
tion of Hierarchically-Combined Queueing Petri Nets
(HQPNs) [2]. The main idea is to allow hierarchical
model specification and then exploit the hierarchical
structure for efficient numerical analysis. This type
of analysis is termed structured analysis and it allows
models to be solved, which are about an order of mag-
nitude larger than those analyzable with conventional
techniques.



HQPNs are a natural generalization of the orig-
inal QPN formalism. In HQPNs a queueing place
may contain a whole QPN instead of a single queue.
Such a place is called a subnet place and is depicted
in Figure 5. A subnet place might contain an ordi-
nary QPN or again a HQPN allowing multiple levels
of nesting. For simplicity, in this paper we restrict
ourselves to two-level hierarchies. We use the term
High-Level QPN (HLQPN) to refer to the upper level
of the HQPN and the term Low-Level QPN (LLQPN)
to refer to a subnet of the HLQPN.

Actual
Population

Input Output

User specified part of
the subnet

Graphical notation for
subnet place

Figure 5: A subnet place and its shorthand notation

Every subnet of a HQPN has a dedicated input and
output place, which are ordinary places of a colored
Petri Net. Tokens being inserted into a subnet place
after a transition firing are added to the input place
of the corresponding HQPN subnet. The semantics of
the output place of a subnet place is similar to the se-
mantics of the depository of a queueing place: tokens
in the output place are available for the output transi-
tions of the subnet place. Tokens contained in all other
places of the HQPN subnet are not available for the
output transitions of the subnet place. Every HQPN
subnet also contains actual − population place, which
is used to keep track of the total number of tokens fired
into the subnet place.

3.3 QPN Analysis Tools

To the best of our knowledge [11], there is currently
only one tool available that supports modelling and
analysis using QPNs. This is the HQPN-Tool pre-
sented in [3]. The latter supports a number of struc-
tured analysis methods for HQPNs, such as Struc-
tured Power, Structured SOR, Structured JOR among
others. These methods provide exact solution of
the model’s underlying Markov Chain, and therefore
the results obtained are independent of the solution
method used.
After this brief introduction to the QPN formalism,

we will now proceed to give a short overview of the
SPECjAppServer2001 benchmark, whose order entry
application will be the subject of our study in the rest
of the paper.

4 The SPECjAppServer2001
Benchmark

SPECjAppServer2001 is a newly released 3 benchmark
for measuring the performance and scalability of J2EE
application servers. SPECjAppServer2001 is the suc-
cessor of the popular ECperf benchmark prototyped
and built by Sun in conjunction with application server
vendors under the Java Community Process (JCP).

4.1 SPECjAppServer2001 Business Model

The SPECjAppServer2001 workload is based on a
large distributed application claimed to be big and
complex enough to represent a real-world e-business
system [12]. The SPECjAppServer2001 designers have
chosen manufacturing, supply chain management, and
order/inventory as the ”storyline”of the business prob-
lem to be modelled. This is an industrial-strength dis-
tributed problem, that is heavyweight, mission-critical
and requires the use of a powerful and scalable infras-
tructure.
SPECjAppServer2001 models businesses using four

domains: customer domain dealing with customer or-
ders and interactions, manufacturing domain perform-
ing ”just in time” manufacturing operations, supplier
domain handling interactions with external suppliers
and corporate domain managing all customer, product,
and supplier information. Figure 6 illustrates these do-
mains and gives some examples of typical transactions
run in each of them. In this paper we will concentrate
on the customer domain, which hosts an order entry
application running four transaction types: NewOrder,
ChangeOrder, OrderStatus and CustomerStatus.

4.2 SPECjAppServer2001 Application Design

All the activities and processes in the four domains de-
scribed above are implemented using Enterprise Java
Bean (EJB) components [13] assembled into a single
J2EE application, which is deployed on the System
Under Test (SUT). The only exception is for the in-
teractions with suppliers, which are implemented using
a separate J2EE application that runs in a Web Con-
tainer on a dedicated machine. A relational DBMS is
used for data persistence [9].
The benchmark can be run in two modes. In the

first mode only the order entry application in the cus-
tomer domain is run, while in the second mode both
the order entry and the manufacturing applications are

3Although released in 2002, the benchmark was named
SPECjAppServer2001 because it uses the workload of the
ECperf 1.1 benchmark, which was released in 2001.



CUSTOMER DOMAIN

Order Entry Application

Transactions:
- Place Order
- Change Order
- Get Order Status
- Cancel Order
- Get Customer Status

CORPORATE DOMAIN

Management of
Customer, Supplier and

Parts Information

   Transactions:
- Check Credit
- Get Percent Discount
- New Customer

MANUFACTURING DOMAIN

Manufacturing Application
-  Planned Lines
-  Large Order Line

   Transactions:
- Schedule Work Order
- Update Work Order
- Complete Work Order
- Create Large Order

SUPPLIER DOMAIN

Management of Interactions
with Suppliers

   Transactions:
- Send Purchase Order
- Deliver Purchase Order

Figure 6: The SPECjAppServer2001 Business Model

run. For further details on SPECjAppServer2001, we
refer the reader to [12] and [9] .

5 Case Study:
Order Entry Application

In this section we proceed to build a QPN-based per-
formance model of the SPECjAppServer2001’s order
entry application, validate it against measured data
and then show how this model can be exploited for
the purposes of performance prediction and sizing in
the capacity planning process.

5.1 Motivation

Recall that the order entry application was running
the following four transaction types:

1. NewOrder : places a new order in the system

2. ChangeOrder : modifies an existing order

3. OrderStatus: retrieves the status of a given order

4. CustomerStatus: lists all orders placed by a given
customer

Now imagine the following hypothetical scenario:
A company is about to introduce an online order-
ing service for its customers and chooses to imple-
ment the service using a J2EE application. Assume
that this application is the order entry application of
SPECjAppServer2001. Before putting the application
into production the company decides to conduct a ca-
pacity planning study in order to come up with an
adequate sizing and configuration of the deployment
environment. We assume that the company initially
plans to deploy the application in the deployment envi-
ronment depicted in Figure 7. This environment uses
a cluster of WebLogic servers (WLS) as a container
for the J2EE application and Oracle 9i as a database
server (DBS) for persistence. We assume that all ma-
chines in the WLS cluster are identical.

Oracle 9i DBS

Load Balancer

WLS 1

.

.

.

Oracle 9i (9.0.1) Database Server
   Hosting the SPECjAppServer DB
   1,7 GHz AMD XP CPU, 1 GB RAM
   Running on Red Hat Linux 7.2

WebLogic Server 7.0 Cluster
   Each node equipped with:
   AMD XP 2000+ CPU, 1 GB RAM
   Running on SuSE Linux 8.0

LAN

WLS 2

WLS N

Internet
Client 2

Client K

Client 1

...

Figure 7: Deployment Environment

The company is interested in finding answers to the
following questions:

1. What level of performance does the system pro-
vide under load?

2. Are there potential system bottlenecks? Does the
system scale?

3. How many application servers would be needed to
guarantee adequate performance?

In addition, the company needs to find optimal val-
ues for the following configuration parameters:

1. Number of threads in WLS thread pools

2. Number of JDBC connections in WLS database
connection pools

3. Number of shared server processes of the Oracle
server instance

We now proceed to show how these issues can be
approached with the help of QPN-based models.

5.2 Workload Characterization

The first step in the capacity planning process is to
describe the workload of the system under study in
a qualitative and quantitative manner. This is called
workload characterization [10] and in its simplest form
includes three major steps:

1. Describe the types of requests that arrive at the
system (called request classes).

2. Identify the hardware and software resources used
by each request class.

3. Measure the total amount of service time (service
demand) for each request class at each resource.



In our scenario we have four request classes cor-
responding to the four order entry transaction types.
The following resources are used during their process-
ing:

1. The CPU of a WebLogic server

2. The network between a WebLogic server and the
database server

3. The CPU of the database server

4. The disk subsystem of the database server (I/O)

In addition to this, each transaction uses a WLS
thread, a database connection and a database server
process during its processing.
In order to determine the service demands we con-

ducted some experiments with the order entry applica-
tion and measured the time spent by each transaction
at each resource. For the database server, we mea-
sured the service demands using the Oracle 9i Intel-
ligent Agent. For the application server, we instru-
mented WebLogic to measure the CPU time spent
in the classes that implement the four order entry
transactions and based on this we were able to de-
termine the service demands of the four request types.
As to network service demands, we decided to ignore
them since all communications were taking place over a
100MBit LAN and communication times were negligi-
ble. Table 1 reports our service demand measurements
for the four request classes in our system.

Table 1: Workload Service Demands

TX-Type WLS-CPU DBS-CPU DBS-I/O

NewOrder 70ms 53ms 12ms

ChangeOrder 26ms 16ms 6ms

OrderStatus 7ms 4ms 0ms

CustomerStatus 10ms 5ms 0ms

5.3 First Cut System Model

We start by proposing a simple QPN system model
which does not utilize any hierarchical structures and
is depicted in Figure 8. For now we assume that there
is a single application server in the WLS cluster.
The following types of tokens (token colors) are used

in the model:

Token ”x” represents a request sent by a client for
execution of a particular transaction. In the case
of multiple request classes, a separate token color
(e.g. ”x”, ”y”, ”z”,...) should be used for each
request class.

Token ”t” represents a WLS thread.

WLS-CPU DBS-PQ DBS-CPU DBS-I/O

DBS-Process-Pool

Client

Database Server

t1 t2 t3 t4 t5

WLS-Thread-Pool

DB-Conn-Poolx
x

x x x x x x x
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x

c
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p
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c
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x
x
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Figure 8: Flat QPN System Model

Token ”c” represents a JDBC connection to the
DBS.

Token ”p” represents a DBS process.

In the following we describe the places of the model:

Client Queueing place with IS scheduling strategy
used to represent clients sending requests to the
system. The service time of this place corresponds
to the average client think time.

WLS-CPU Queueing place with PS scheduling strat-
egy used to represent the CPU of WLS.

DBS-CPU Queueing place with PS scheduling strat-
egy used to represent the CPU of the DBS.

DBS-I/O Queueing place with FCFS scheduling
strategy used to represent the disk subsystem of
the DBS.

WLS-Thread-Pool Ordinary place used to repre-
sent the thread pool of WLS. Each token in this
place represents a WLS thread.

DB-Conn-Pool Ordinary place used to represent the
JDBC connection pool of WLS. Tokens in this
place represent JDBC connections to the DBS.

DBS-Process-Pool Ordinary place used to repre-
sent the process pool of the DBS. Tokens in this
place represent Oracle processes.

DBS-PQ Ordinary place used to hold incoming re-
quests at the DBS while they wait for a server
process to be allocated to them.

We now take a look at the life-cycle of a client
request in our system model. Every request (mod-
elled by token of color ”x”) is initially at the queue of
place Client, where it waits for a user-specified think
time. After the think time elapses, the request moves



to the Client depository, where it waits for a WLS
thread to be allocated to it, before its processing can
start. Once a thread is allocated (modelled by tak-
ing a token of color ”t” from place WLS-Thread-Pool),
the request moves to the queue of place WLS-CPU,
where it receives service from the CPU of WLS. It
then moves to the depository of the place and waits
for a JDBC connection to be allocated to it. The
JDBC connection (modelled by token ”c”) is used to
contact the database and make any updates required
by the respective transaction. A request sent to the
database server arrives at the place DBS-PQ (DBS
Process Queue) where it waits for a server process
(modelled by token ”p”) to be allocated to it. Once
this is done, the request receives service first at the
CPU and then at the disk subsystem of the database
server. This completes the processing of the request,
which is then sent back to place Client releasing the
held DBS process, JDBC connection and WLS thread.
The following input parameters need to be supplied

before the model can be analyzed:

• Number of requests of each request class in the
initial marking.

• Service demands of request classes at the queues of
places WLS-CPU, DBS-CPU and DBS-I/O (see
Table 1).

• Average client think time (service time at the
queue of place Client).

• Number of WLS threads (tokens ”t”), JDBC con-
nections (tokens ”c”) and Oracle server processes
(tokens ”p”) in the initial marking.

5.4 Hierarchical System Model

The model described above is a flat QPN model and
its corresponding state space grows exponentially with
the number of requests in the system. This means
that only relatively small instances of the model (with
relatively small number of requests) are analyzable.
We will now show how hierarchical structuring can be
exploited in order to alleviate the state space explosion
problem and enable larger models to be analyzed.
The idea is to isolate the database server and model

it using a separate nested QPN. In order to do this we
replace the database server part of the original flat
QPN with a single subnet place which we call ”DBS”.
This place represents the entire database server and is
expanded into a low-level QPN containing the original
DBS queues of our flat model. Figures 9 and 10 show
the high-level and low-level QPN of our new system
model.
By specifying our model in a hierarchical fashion

we can now exploit structured analysis techniques [2],
which enables us to solve models with much higher
number of requests.
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Figure 9: Model’s High-Level QPN
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Figure 10: Model’s Low-Level QPN

5.5 Model Analysis and Validation

We will now proceed to analyze several different in-
stances of our models introduced in the previous sec-
tion and then validate them by comparing results from
the analysis with measured data. We start by taking
a look at the mathematical laws and formulas that we
will be using in our analysis. Our presentation is based
on the following notation:

D : Service demand of a queue, i.e. the amount of
time required for a token (request) to be served
at the queue.

µ : Average service rate of a queue, i.e. the number of
tokens (requests) served at the queue per unit of
time.

N : Average token population of a queue, place or de-
pository, i.e. the average number of tokens (re-
quests) in it.

U : Average utilization of a queue, place or depository,
i.e. the probability that there is a token (request)
in it.

X : Average throughput of a queue, place or de-
pository, i.e. the number of tokens (requests)
that leave it per unit of time. Note that, at
steady state, the rate at which tokens leave a
queue/place/depository is equal to the rate at
which they enter it.



R : Average residence time of a token (request) at a
queue, place or depository.

All models that we will be considering in this sec-
tion will be based on the hierarchical system model
presented in the previous section. We will be using
the HQPN-Tool [3] to solve the models. Based on the
solution of the model’s underlying Markov Chain the
HQPN-Tool reports the distribution of the number of
tokens at each place in steady state. For queueing
places the latter is reported separately for the queue
and for the depository of the place. Using the distri-
butions, one can easily derive the average token popu-
lation N (which is done automatically and reported by
the tool) and the utilization U of each queue in steady
state. The following trivial relations hold:

N =
∞∑

i=0

i.pi (3)

U = 1− p0 (4)

where pi is the probability that there are i tokens in
the queue.
Note that, since places Client, WLS-CPU,

DBS-PQ, DBS-CPU and DBS-I/O form a closed chain
with respect to the flow of requests in the system, us-
ing the ”flow-in = flow-out” principle from Queueing
Theory [14], we can conclude that the throughputs of
requests through these places in steady state must be
equal. The same applies also to the queues and de-
positories of these places, i.e. they have the same
throughput as the places themselves. Furthermore,
this holds both for total request throughputs, as well
as for throughputs of particular request classes.
The following trivial relationship holds [10]:

µ =
1

D
(5)

Using this formula we can derive the service rates of
the queues in our model for the different request classes
based on their service demands provided in Table 1.
Given that the service rates of all queues are load-
independent, we can then use the following relation
(which follows from the Utilization Law) in order to
derive the throughput X of a queue in the case of a
single request class:

X = U .µ (6)

In the case of multiple request classes we can derive
the throughput of each request class using Little’s Law.
Recall that the latter relates the throughput X of a
queue with the average number of requests N in it
and their average residence time R. The relation is
shown in Equation 7 below and can be applied both
with respect to all requests of the system, as well as,
with respect to separate request classes.

X =
N

R
(7)

We apply this formula to the Client queue for each
request class in the system. The average number N of
requests of each class is reported by the tool. The resi-
dence time of requests R is also known since the queue
has ”Infinite Server” scheduling strategy and therefore
the residence time of all requests is equal to the ser-
vice time of the queue. However, the service time of
the queue is per definition equal to the client think
time, which is an input parameter to the model. Sub-
stituting N and R in Equation 7 we can calculate the
throughput of each request class.
Now that we know how to find the throughput of

requests in the system, we can derive the residence
time of requests at every place, queue or depository
using the following equation, which again follows di-
rectly from Little’s Law:

R =
N

X
(8)

We are now ready to start analyzing some concrete
instances of our models.

5.5.1 Scenario 1: Single Request Class

We start with a simplified scenario in which we have
a single application server and a single request class,
the NewOrder transaction. Our goal is to analyze the
behavior of the system with respect to this transac-
tion. Assume that we have 80 clients in the system
with average think time of 200ms and there are 60
WLS threads, 40 JDBC connections and 30 DBS pro-
cesses available. We use this data to parameterize our
hierarchical system model from section 5.4.
Table 2 summarizes our analysis results for this

scenario. It reports the calculated throughputs and
residence times of requests at the most important
queues and depositories. It also reports the av-
erage token population of places WLS-Thread-Pool,
DB-Conn-Pool and DBS-Process-Pool. We have used
subscripts ”Q” and ”D” to distinguish between queues
and depositories of places.
The total end-to-end request response time (RTotal)

is equal to the time needed for a request to make a
complete cycle through the queueing places of the sys-
tem. The latter can be calculated by summing up the
residence times of requests at the queues and deposi-
tories of all queueing places plus the residence time at
the ordinary place DBS-PQ.

RTotal = RClientD
+RWLS−CPUQ

+

+RWLS−CPUD
+RDBS−PQ +

+RDBS−CPUQ
+RDBS−I/OQ

(9)



Table 2: Analysis Results for Scenario 1

PLACE N U X R [ms]

ClientQ 2.85 0.94 14.28 200

ClientD 17.14 1.00 -//- 1200

WLS-CPUQ 56.67 1.00 -//- 3967

WLS-CPUD 0.00 0.00 -//- 0

DBS-PQ 0.00 0.00 -//- 0

DBS-CPUQ 3.11 0.75 -//- 218

DBS-I/OQ 0.20 0.17 -//- 14

WLS-Thread-Pool 0.00 0.00

DB-Conn-Pool 36.67 1.00

DBS-Process-Pool 26.67 1.00

Note that the above sum excludes the Client queue,
since the time spent at it corresponds to the client
think time. It also excludes the depositories of places
DBS-CPU and DBS-I/O, because requests never wait
at them.
Table 3 compares results obtained from the model

analysis with results obtained from measurements and
shows the modelling error for the most important per-
formance metrics. The measurements were collected
by running an experiment in which the specified work-
load was injected into the system over a period of
40 minutes. Measurements were taken after the first
10 minutes, which the system needed to reach steady
state.

Table 3: Modelling Error for Scenario 1

METRIC
Model Measured Error

WLS-CPU Utilization 100% 100% 0%

DBS-CPU Utilization 75% 65% 15%

NewOrder Throughput 14.28 13.43 6.3%

NewOrder Resp.Time 5399ms 5738ms 5.9%

Thread Queue Length 17.14 18 4.7%

As we can see from Table 2, requests spend 1200ms
on average at the Client depository waiting for a WLS
thread to be freed. On the other hand, there are plenty
of DB connections and DBS processes available and
there is no contention for these resources as indicated
by the residence times of requests at WLS-CPUD and
DBS-PQ, both of which are zero. Since, on average,
there are only 3.31 requests served concurrently at
the database server we can decrease the number of
available JDBC connections and DBS processes signif-
icantly without impacting performance in any negative
way. In fact, doing this could even improve the overall
performance since JDBC connections and DBS pro-
cesses cost memory and reducing them will increase
the amount of memory available for the application
server and database server, respectively.
It would be interesting to see what would change if

we decrease the number of available WLS threads to
40. This would limit the number of requests processed
concurrently by the application server. Table 4 repeats
the analysis for 40 WLS threads.

Table 4: Analysis Results for Sc. 1 with 40 Threads

PLACE N U X R [ms]

ClientQ 2.85 0.94 14.28 200

ClientD 37.14 1.00 -//- 2601

WLS-CPUQ 36.67 1.00 -//- 2568

WLS-CPUD 0.00 0.00 -//- 0

DBS-PQ 0.00 0.00 -//- 0

DBS-CPUQ 3.11 0.75 -//- 218

DBS-I/OQ 0.20 0.17 -//- 14

WLS-Thread-Pool 0.00 0.00

DB-Conn-Pool 36.67 1.00

DBS-Process-Pool 26.67 1.00

As we can see, the change does not have any im-
pact on the overall system throughput, since the ap-
plication server is in both cases saturated to its full
capacity. However, one might at first be misled to be-
lieve that because of increased contention for threads,
the end-to-end request response time would also in-
crease, which according to our model as well as our
measurements is not the case. This is because reduc-
ing the level of concurrency in the application server,
results in requests being served faster and this com-
pensates the longer time spent queueing for threads.
In both cases the application server is completely uti-
lized and the rest of the system remains unaffected by
the change. Table 5 shows the modelling error with 40
threads. As we can see in both cases the QPN models
are quite accurate in representing the system.

As demonstrated, QPNs enable us to integrate in
the same model both hardware and software aspects
of system behavior. Using queueing places we can eas-
ily model hardware contention and scheduling strate-
gies, with the same flexibility as in traditional Queue-
ing Networks. However, in addition to this, QPNs
also empower us to represent some further aspects of
system behavior such as simultaneous resource posses-
sion, blocking and contention for software resources
(threads, connections and processes). The latter is
not possible, at least at this level of accuracy, using
conventional modelling paradigms such as Queueing
Networks and Petri Nets. Even though extensions
of Queueing Networks, such as the so-called Extended
Queueing Networks, provide some limited support for
modelling software contention, they are way too re-
strictive and inaccurate to compare with the modelling
power demonstrated in the above examples.



Table 5: Mod. Error for Scenario 1 with 40 Threads

METRIC
Model Measured Error

WLS-CPU Utilization 100% 100% 0%

DBS-CPU Utilization 75% 65% 15%

NewOrder Throughput 14.28 13.41 6.4%

NewOrder Resp.Time 5401ms 5742ms 5.9%

Thread Queue Length 37.14 40 7.1%

5.5.2 Scenario 2: Multiple Request Classes

We will now look at a scenario in which we have
two classes of requests in the system - NewOrder
and ChangeOrder. We again use our hierarchical
model from section 5.4 as a basis. However, this
time we define two types of request tokens (NewOrder
and ChangeOrder) so that we can distinguish be-
tween the two request classes. Trying to solve the
resulting HQPN model for high values of the num-
ber of NewOrder and ChangeOrder clients, we ran
into state space explosion of the underlying Markov
Chain. Therefore we make some simplifications in or-
der to come up with a model that is analyzable. First
of all, we assume that there are plenty of JDBC con-
nections and DBS Server processes and drop places
DB-Conn-Pool and DBS-Process-Pool. In addition,
we assume that there are only 20 clients in the sys-
tem (10 NewOrder and 10 ChangeOrder), the aver-
age think time is 1 sec and there are 10 WLS threads
available. Tables 6 and 7 report the analysis results
and modelling error, respectively, for this scenario. As
we can see, the QPN models are also quite accurate
in representing the system behavior with multiple re-
quest classes. The modelling error for most perfor-
mance metrics remains under 10%.

5.5.3 Scenario 3: Multiple Appl. Servers

In this final scenario we will generalize our initial set-
ting to allow multiple application servers to be used.
We again use the hierarchical system model from sec-
tion 5.4 as a basis, but modify the HLQPN to include
multiple WLS queueing places - one per application
server. The new HLQPN is depicted in Figure 11.
To simplify things we do not include WLS-Thread

places for the application servers in the new model. In
fact, if we were to have WLS-Thread places for the ap-
plication servers, we would also need some way to dis-
tinguish between requests in the DBS subnet originat-
ing from different application servers. This is because
we need to know at which application server to release
a thread after completing service at the DBS subnet.
One way to implement this is using the notion of tags
[4] which are automatically added to tokens upon en-
try into the DBS subnet to keep track of their origin.
However, this functionality is currently not supported
by the HQPN-Tool and therefore we don’t include any

Table 6: Analysis Results for Scenario 2

PLACE N U X R [ms]
WLS-Thread-Pool 6.68 0.99

Over All Request Classes

ClientQ 16.67 1.00 16.67 1000

ClientD 0.00 0.00 -//- 0

WLS-CPUQ 2.14 0.76 -//- 128

DBS-CPUQ 1.00 0.54 -//- 59

DBS-I/OQ 0.16 0.14 -//- 9

Over NewOrder Requests

ClientQ 7.45 1.00 7.45 1000

ClientD 0.00 0.00 -//- 0

WLS-CPUQ 1.64 0.70 -//- 220

DBS-CPUQ 0.79 0.46 -//- 107

DBS-I/OQ 0.10 0.06 -//- 14

Over ChangeOrder Requests

ClientQ 9.22 1.00 9.22 1000

ClientD 0.00 0.00 -//- 0

WLS-CPUQ 0.50 0.35 -//- 54

DBS-CPUQ 0.21 0.19 -//- 23

DBS-I/OQ 0.06 0.09 -//- 7

Table 7: Modelling Error for Scenario 2

METRIC
Model Measured Error

WLS-CPU Utilization 76% 77% 1.2%

DBS-CPU Utilization 54% 64% 15.6%

Avg.free WLS-Threads 6.68 7 4.5%

NewOrder Throughput 7.45 7.47 0.2%

NewOrder Resp. Time 341ms 318ms 7.2%

ChgOrder Throughput 9.22 9.15 0.7%

ChgOrder Resp. Time 84ms 104ms 19.2%

WLS-Thread places in our model. We assume that
there are 30 NewOrder clients in the system and that
there is no contention for WLS threads, JDBC con-
nections or Oracle processes. The client think time
is again 1 sec. Table 8 summarizes the analysis re-
sults for 2 and 3 application servers, respectively, and
Table 9 reports the modelling error. As seen from the
results, the modelling error remains under 10% and
our QPN models perform quite well as a performance
prediction tool.

6 Summary and Conclusions

In this paper we showed how QPN models can
be exploited for performance analysis of distributed
e-business systems. We studied a real-world applica-
tion and demonstrated the modelling power and ex-
pressiveness of the QPN formalism, by showing how
it enables us to integrate both hardware and software
aspects of system behavior in the same model. In addi-
tion to hardware contention and scheduling strategies,
QPNs empower the modeler to easily represent simul-
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Figure 11: High-Level QPN Model with N Appl.
Servers

Table 8: Analysis Results for Scenario 3

PLACE N U X R [ms]
For 2 Application Servers

ClientQ 18.28 1.00 18.28 1000

WLS1-CPUQ 1.68 0.64 9.14 184

WLS2-CPUQ 1.68 0.64 9.14 184

DBS-CPUQ 8.07 0.96 18.28 441

DBS-I/OQ 0.27 0.21 -//- 15

For 3 Application Servers

ClientQ 18.42 1.00 18.42 1000

WLS1-CPUQ 0.72 0.43 6.14 117

WLS2-CPUQ 0.72 0.43 6.14 117

WLS3-CPUQ 0.72 0.43 6.14 117

DBS-CPUQ 9.05 0.98 18.42 491

DBS-I/OQ 0.28 0.22 -//- 15

taneous resource possession, synchronization, blocking
and contention for software resources. The latter is
not doable to this extent using conventional modelling
paradigms such as Queueing Networks and Petri Nets.
By validating the models presented, through measure-
ments, we showed that QPNs are not just powerful as a
specification mechanism, but are also very powerful as
a performance analysis and prediction tool. However,
if this power is to be exploited to its full potential, im-
proved solution methods and software tools for QPNs
need to be developed which enable larger models to be
analyzed.
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Table 9: Modelling Error for Scenario 3

METRIC
Model Measured Error

For 2 Application Servers

WLS-CPU Utilization 64% 68% 6%

DBS-CPU Utilization 96% 91% 5%

NewOrder Throughput 18.28 17.56 4%

NewOrder Resp. Time 640ms 693ms 8%

For 3 Application Servers

WLS-CPU Utilization 43% 44% 2%

DBS-CPU Utilization 98% 97% 1%

NewOrder Throughput 18.42 17.61 5%

NewOrder Resp. Time 623ms 673ms 7%
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