
PERFORMANCE MODELING AND EVALUATION OF
LARGE-SCALE J2EE APPLICATIONS

�

Samuel Kounev Alejandro Buchmann

Department of Computer Science
Darmstadt University of Technology, Germany

{skounev,buchmann}@informatik.tu-darmstadt.de

Modern J2EE applications are typically based on highly distributed architectures compris-
ing multiple components deployed in a clustered environment. This makes it difficult for de-
ployers to estimate the capacity of the deployment environment needed to guarantee that
Service Level Agreements are met. This paper looks at the different approaches to this
problem and discusses the difficulties that arise when one tries to apply them to large, real-
world systems. The authors study a realistic J2EE application (the SPECjAppServer2002
benchmark) and show how analytical models can be exploited for capacity planning.

1 Introduction
Over the past couple of years, the Java 2 Enterprise
Edition Platform (J2EE) has established itself as major
technology for developing modern e-business solutions.
This success is largely due to the fact that J2EE is not
a proprietary product, but rather an industry standard,
developed as the result of a large industry initiative led
by Sun Microsystems, Inc. The goal of this initiative
was to establish a standard middleware framework for
developing enterprise-class distributed applications in
Java. Over 30 software vendors have participated in
this effort and have come up with their own implemen-
tations of J2EE, the latter being commonly referred to
as J2EE Application Servers.

The aim of J2EE is to enable developers to quickly
and easily build scalable, reliable and secure appli-
cations without having to develop their own complex
middleware services. Developers can concentrate on
the business and application logic and rely on the J2EE
Application Server to provide the infrastructure needed
for scalability and performance. One of the key ser-
vices within this infrastructure, provided by most J2EE
application servers, is clustering. A cluster is a group
of servers that act in a coordinated fashion to provide
access to a set of applications in a scalable manner.

�

This work was partially funded by BEA Systems, Inc. as part of
the project "Capacity Planning and Performance Analysis of J2EE Ap-
plications and Web Services" and the Deutsche Forschungsgemein-
schaft (DFG) as part of the PhD program "Enabling Technologies for
E-Commerce" at Darmstadt University of Technology.

When a J2EE application is deployed in a clustered
environment, its components are transparently repli-
cated on the servers participating in the cluster. Client
requests are then load-balanced across cluster nodes
and in this way scalability can be achieved.

Modern J2EE applications are typically based on
highly distributed, multi-tiered architectures comprising
multiple components deployed in a clustered environ-
ment. The inherent complexity of the latter makes
it difficult for system deployers to estimate the size
and capacity of the deployment environment needed to
guarantee that Service Level Agreements (SLAs) are
met. Deployers are often faced with questions such as
the following:

� What hardware and software resources are needed
to guarantee that SLAs are met? More specifically,
how many application servers need to be included
in the clusters used and how fast should they be?

� What are the maximum load levels that the sys-
tem will be able to handle in the production envi-
ronment?

� What would the average response time, through-
put and resource utilization be under the expected
workload?

� Which components have the largest effect on the
overall system performance and are they potential
bottlenecks?

The above are typical capacity planning questions
[MA00]. In seeking answers to them deployers often
rely on their intuition, ad hoc procedures, expert opin-
ions or general rules of thumb. As a result, the overall
system capacity is unknown and capacity planning and
procurement are done without a strictly defined method-
ology. Clearly, the issues of sizing and capacity plan-
ning need to be approached in a more formal and sys-
tematic way if performance is to be guaranteed.

This paper studies a real-world J2EE applica-
tion of a realistic complexity and shows how to
exploit analytical performance models in order to
address the problems discussed above. The ap-
plication studied is the SPECjAppServer2002 J2EE
benchmark [Sta02], which represents a heavy-duty
business-to-business e-commerce workload. The pa-
per starts by giving an overview of the different ap-
proaches to performance analysis of distributed sys-
tems. It then concentrates on analytical model-
ing and discusses the different types of analytical
performance models and their advantages and dis-
advantages. Following that, the paper introduces
the SPECjAppServer2002 benchmark and shows
how to develop a queueing network model of a
SPECjAppServer2002 deployment. This model is then
used to predict system performance under several dif-
ferent configurations. Finally, results obtained from the
model are validated through measurements.

2 Approaches to Performance Analysis

Two broad approaches help carry out performance anal-
ysis of distributed systems:

� Load Testing

� Performance Modeling

In the first approach, load-testing tools are used to
generate artificial workloads on the system and mea-
sure its performance. Sophisticated load testing tools
can emulate hundreds of thousands of ’virtual users’
that mimic real users interacting with the system. While
tests are run, system components are monitored and
performance metrics (e.g. response time, latency, uti-
lization and throughput) are measured. Results ob-
tained in this way can be used to identify and isolate
system bottlenecks, fine-tune application components
and predict the end-to-end system scalability. Unfortu-
nately this approach is extremely expensive, since it re-
quires setting up a production-like testing environment
to conduct the tests. Moreover, it is not applicable in the
early stages of system development when the system is
not available for testing.

In the second approach, performance models are
built and then used to analyze the performance and
scalability characteristics of the system under study.
Models represent the way system resources are used

by the workload and capture the main factors determin-
ing the behavior of the system under load. Performance
models can be grouped into two common categories:
simulation models and analytical models [MA00].

Simulation models are software programs that mimic
the behavior of a system as requests arrive and get
processed by various resources. The structure of a
simulation program is based on the states of the sim-
ulated system and events that change the system state.
Simulation programs measure performance by counting
events and recording the duration of time spent in differ-
ent states. The main advantage of simulation models is
their great generality and the fact that they can provide
very accurate results. However, this accuracy comes at
the cost of the time taken to develop and run the mod-
els. Usually lots of long runs are required in order to
obtain estimates of needed performance measures with
reasonable confidence levels [MA00].

Analytical models are a cost-effective alternative to
simulation. They are based on mathematical laws
and computational algorithms used to generate perfor-
mance metrics from model parameters.

3 Analytical Performance Models

Analytical models can be broadly classified into state-
space models and non-state-space models [BGMT98].
The most commonly used state-space models are
Markov Chains. The latter consist of a set of states and
a set of labeled transitions between the states. States
represent conditions of interest in the system under
study - for example the number of requests waiting to
use a resource. A number of concise specification tech-
niques for Markov Chains are available in the literature.
Queueing Networks (QNs) [Tri02] and Stochastic Petri
Nets (SPNs) [BK02] are among the most popular exam-
ples. Moreover, a number of extensions both to Queue-
ing Networks and to Stochastic Petri Nets have been
proposed, which further enhance their modeling power.
Examples are Extended Queueing Networks [BGMT98]
and Queueing Petri Nets [Bau93]. The main problem
with Markov Chains, however, is that as one increases
the size of the model, the underlying state space grows
exponentially and quickly exceeds the capacity of to-
day’s computers [KB03]. This is the so-called state-
space explosion problem and is a major hurdle to the
practical application of Markov Chains and state-space
models in general.

The continuing need to be able to solve larger models
has led to the emergence of non-state-space models.
The most popular example are the well-known Product-
Form Queueing Networks (PFQNs) [BGMT98], which
have been widely used in the past decades. PFQNs
are a specific class of queueing networks, for which
it is possible to derive steady-state performance mea-
sures without resorting to the underlying state space.
Relatively large PFQNs can be solved by means of

simpler equations. However, many practical queueing
networks (so-called Non-Product-Form Queueing Net-
works - NPFQNs) do not satisfy the requirements for a
product-form solution. In such cases, it is often possi-
ble to obtain accurate approximations using techniques
based on the solution methods for PFQNs.

In the past decades, non-state-space models have
been the subject of rigorous research and consider-
able advances have been made in the development
of techniques for their solution. Many books and
research papers have been written on the topics of
performance modeling and prediction using product
and non-product-form queueing networks. However,
when it comes to practical applications in the field
of e-business, examples quoted are usually target-
ing highly-specialized and rather unrealistic scenarios.
The goal of this paper is to demonstrate how non-
state-space queueing network models can be exploited
for performance analysis of real-world, J2EE-based
e-business systems. It discusses the problems that
arise from the limitations of the models in terms of
expressiveness and shows how they can be circum-
vented. The reason for choosing to use queueing net-
works is that they have the advantage that a large num-
ber of efficient methods are available for their solution
which can handle relatively large models [KB03].

4 The SPECjAppServer2002 Benchmark

SPECjAppServer2002 is a new industry stan-
dard benchmark for measuring the performance
and scalability of J2EE-based application servers.
The benchmark was released in November 2002
and is essentially a J2EE1.3/EJB2.0 port of the
existing SPECjAppServer2001 benchmark. Both
SPECjAppServer2001 and 2002 are based on the pop-
ular ECperf benchmark which was prototyped and built
by Sun Microsystems in conjunction with application
server vendors under the Java Community Process
(JCP). Server vendors can use the SPECjAppServer
benchmarks to measure, optimize and showcase their
product’s performance and scalability. Their customers,
on the other hand, can use them to gain a better un-
derstanding and insight into the tuning and optimization
issues surrounding the development of modern J2EE
applications.

4.1 SPECjAppServer2002 Business Model

The SPECjAppServer2002 workload is based on a dis-
tributed application claimed to be large enough and
complex enough to represent a real-world e-business
system [Sta02]. The benchmark designers have cho-
sen manufacturing, supply chain management, and or-
der/inventory as the "storyline" of the business problem
to be modeled. This is an industrial-strength distributed
problem, that is heavyweight, mission-critical and re-
quires the use of a powerful and scalable infrastructure.

SPECjAppServer2002 models businesses using four
domains: customer domain dealing with customer or-
ders and interactions, manufacturing domain perform-
ing "just in time" manufacturing operations, supplier do-
main handling interactions with external suppliers and
corporate domain managing all customer, product, and
supplier information. Figure 1 illustrates these domains
and gives some examples of typical transactions run in
each of them.

CUSTOMER DOMAIN

Order Entry Application

 - Place Order

 - Change Order

 - Get Order Status

 - Get Customer Status

CORPORATE DOMAIN

Customer, Supplier and

Parts Information

 - Register Customer

 - Determine Discount

- Check Credit

MANUFACTURING DOMAIN

Manufacturing Application

 - Schedule Work Order

 - Update Work Order

 - Complete Work Order

 - Create Large Order

SUPPLIER DOMAIN

Interactions with

Suppliers

 - Select Supplier

 - Send Purchase Order

 - Deliver Purchase Order

Figure 1: SPECjAppServer2002 Business Domains

The customer domain models customer interactions
using an order entry application, which provides some
typical online ordering functionality. Orders can be
placed by individual customers as well as by dis-
tributors. Orders placed by distributors are called
large orders.

The manufacturing domain models the activity of pro-
duction lines in a manufacturing plant. Products man-
ufactured by the plant are called widgets. There are
two types of production lines, namely planned lines and
large order lines. Planned lines run on schedule and
produce a predefined number of widgets. Large order
lines run only when a large order is received in the cus-
tomer domain. The unit of work in the manufacturing
domain is a work order. Each work order is for a spe-
cific quantity of a particular type of widget. When a work
order is created, the bill of materials for the correspond-
ing type of widget is retrieved and the required parts are
taken out of inventory. As the widgets move through the
assembly line, the work order status is updated to re-
flect progress. Once the work order is complete, it is
marked as completed and inventory is updated. When
inventory of parts gets depleted, suppliers need to be
located and purchase orders (POs) need to be sent out.
This is done by contacting the supplier domain, which is
responsible for interactions with external suppliers.

4.2 SPECjAppServer2002 Application Design

All the activities and processes in the four domains de-
scribed above are implemented using Enterprise Java
Bean (EJB) components (adhering to the EJB 2.0 spec-
ification [Sun]) assembled into a single J2EE application
which is deployed in an application server running on
the System Under Test (SUT). The only exception is for
the interactions with suppliers which are implemented
using a separate Java servlet application called Sup-
plier Emulator. The latter is deployed in a Java-enabled
web server on a dedicated machine. The supplier emu-
lator provides the supplier domain with a way to emulate
the process of sending and receiving purchase orders
to/from suppliers.

The workload generator is implemented us-
ing a multithreaded Java application called
SPECjAppServer Driver . The latter is designed to
run on multiple client machines, using an arbitrary
number of Java Virtual Machines to ensure that it has
no inherent scalability limitations. A relational DBMS is
used for data persistence [KB02] and all data access
operations use entity beans which are mapped to tables
in the SPECjAppServer database.

The throughput of the benchmark is driven by the
activity of the order entry and manufacturing applica-
tions. The throughput of both applications is directly
related to the chosen Transaction Injection Rate, which
determines the number of order entry requests gen-
erated and the number of work orders scheduled per
second. The summarized performance metric pro-
vided after running the benchmark is called TOPS
and it denotes the average number of successful Total
Operations Per Second completed during the measure-
ment interval. Readers interested in more detail on the
SPECjAppServer2002 EJBs, the database model and
transactions implemented can refer to [Sta02].

5 Modeling SPECjAppServer2002
This section discusses how to build and validate a
queueing network model of SPECjAppServer2002 and,
then, how to exploit this model for the purposes of per-
formance prediction in the capacity planning process.

5.1 Motivation

Imagine the following hypothetical scenario: A company
is about to automate its internal and external business
operations with the help of e-business technology. The
company chooses to employ the J2EE platform and
develops a J2EE application for supporting its order-
inventory, supply-chain and manufacturing operations.
Assume that this application is the one provided in the
SPECjAppServer2002 benchmark. Assume also that
the company plans to deploy the application in the de-
ployment environment depicted in Figure 2. This envi-
ronment uses a cluster of WebLogic servers (WLS) as
a J2EE container and an Oracle database server (DBS)

for persistence. We assume that all machines in the
WLS cluster are identical.

Database Server

.
.
.

Oracle 9i Database Server

 Hosting the SPECjAS DB

 2 x AMD XP 2000+ CPUs

 2 GB RAM, SuSE Linux 8

WebLogic Server 7 Cluster

 Each node equipped with:

 AMD XP 2000+ CPU

 1 GB RAM, SuSE Linux 8

100 Mbit

LAN

Client PC

Supplier Emulator

Supplier Emulator Machine

 WebLogic Server 7

 2 x AMD XP2000+ CPUs

 2 GB RAM, SuSE Linux 8

Client Emulator Machine

 Running SPECjAS Driver

 AMD XP 1700+ CPU

 1GB RAM, RedHat Linux 8

Figure 2: Deployment Environment

Before putting the application into production the
company conducts a capacity planning study in order
to come up with an adequate sizing and configuration
of the deployment environment. More specifically, the
company needs answers to the following questions:

� How many WebLogic servers would be needed
to guarantee adequate performance under the
expected workload?

� For a given number of WebLogic servers, what
level of performance would the system provide?
What would the average transaction throughput
and response time be? How utilized (CPU/Disk
utilization) would the WebLogic servers and the
database server be?

� Will the capacity of the database server suffice to
handle the incoming load?

� Does the system scale or are there any other
potential system bottlenecks?

These issues can be approached with the help of
queueing network-based performance models.

5.2 Workload Characterization

The first step in the capacity planning process is to
describe the workload of the system under study in
a qualitative and quantitative manner. This is called
workload characterization [MA98] and in its simplest
form includes four major steps:

1. Describe the types of requests that are processed
by the system (called request classes).

2. Identify the hardware and software resources used
by each request class.

3. Measure the total amount of service time (called
service demand) for each request class at each
resource.

4. Give an indication of the number of requests of
each class that the system will be exposed to. The
latter is often termed workload intensity.

As already discussed, the SPECjAppServer2002
workload is made up of two major components - the
order entry application in the customer domain and the
manufacturing application in the manufacturing domain.
Recall that the order entry application is running the
following four transaction types:

1. NewOrder : places a new order in the system

2. ChangeOrder : modifies an existing order

3. OrderStatus: retrieves the status of a given order

4. CustStatus: lists all orders of a given customer

We map each of them to a separate request class in
our workload model. The manufacturing application, on
the other hand, is running production lines. The main
unit of work there is a work order. Each work order pro-
duces a specific quantity of a particular type of widget.
As already mentioned, there are two types of produc-
tion lines: planned lines and large order lines. While
planned lines run on a predefined schedule, large order
lines run only when a large order arrives in the cus-
tomer domain. Each large order results in a separate
work order. During the processing of work orders multi-
ple transactions are executed in the manufacturing do-
main, i.e. scheduleWorkOrder, updateWorkOrder and
completeWorkOrder. Each work order moves along 3
virtual stations, which represent distinct operations in
the manufacturing flow. In order to simulate activity at
the stations, the manufacturing application waits for a
designated time at each station.

One way to model the manufacturing workload would
be to define a separate request class for each transac-
tion run during the processing of work orders. How-
ever, this would lead to an overly complex model and
would limit the range of analysis techniques that would
be applicable for its solution. Second, it wouldn’t be of
much benefit, since after all, what most interests us is
the rate at which work orders are processed and not
the performance metrics of the individual work-order-
related transactions. Therefore, we model the manu-
facturing workload only at the level of work orders. We
define a single request class WorkOrder, which repre-
sents a request for processing a work order. This keeps
our model simple and as will be seen later is enough to
provide us with sufficient information about the behavior
of the manufacturing application.

Altogether, we end up with 5 request classes:
NewOrder, ChangeOrder, OrderStatus, CustStatus and

WorkOrder. The following resources are used during
their processing:

� The CPU of a WebLogic server (WLS-CPU)

� The Local Area Network

� The CPUs of the database server (DBS-CPU)

� The disk drives of the database server (DBS-I/O)

In order to determine the service demands at these
resources, we conducted a separate experiment for
each of the 5 request classes. In each case, we
deployed the benchmark in a configuration with a sin-
gle WebLogic server and then injected requests of the
respective class into the system. During the experi-
ment, we monitored the system resources and mea-
sured the time requests spend at each resource dur-
ing their processing. For the database server, we used
the Oracle 9i Intelligent Agent, which provides exhaus-
tive information about CPU consumption, as well as
I/O wait times. For the application server, we moni-
tored the CPU utilization using operating system tools
and then used the Service Demand Law [MA98] to de-
rive the CPU service demand: the service demand

�
of requests at a given resource is equal to the aver-
age resource utilization � divided by the average re-
quest throughput � , during the measurement interval
(assuming, of course, that requests of just one type are
processed during the experiment), i.e.

��� �
� (1)

We decided we could safely ignore network ser-
vice demands, since all communications were taking
place over a 100 MBit LAN and communication times
were negligible. Table 1 reports the service demand
measurements for the 5 request classes in our work-
load model. Figure 3 summarizes these measurements
in a graphical form.

0 10 20 30 40 50 60 70

WorkOrder

CustStatus

OrderStatus

ChangeOrder

NewOrder

Service Demand (ms)

WLS-CPU DBS-CPU DBS-I/O

Figure 3: Workload Service Demands

Table 1: Workload Service Demands

TX-Type WLS-CPU DBS-CPU DBS-I/O
NewOrder 12.98ms 10.64ms 1.12ms
ChangeOrder 13.64ms 10.36ms 1.27ms
OrderStatus 2.64ms 2.48ms 0.58ms
CustStatus 2.54ms 2.08ms 0.3ms
WorkOrder 24.22ms 34.14ms 1.68ms

As we can see from Table 1, database I/O service
demands are much lower than CPU service demands.
This stems from the fact that data is cached in the
database buffer and disks are usually accessed only
when updating or inserting new data. However, even
in this case I/O overhead is minimal since the only thing
that is done is to flush the database log buffer, which
is performed with sequential I/O accesses. Here we
would like to point out that the current version of the
benchmark uses relatively small data volumes for the
workload intensities generated. This results in data con-
tention [KB02] and as we will see later causes some dif-
ficulties in predicting transaction response times since
data contention does not easily lend itself to analytical
modeling using conventional techniques.

Once we know the service demands of the differ-
ent request classes, we proceed with the last step in
workload characterization, which aims to quantify work-
load intensity. For each request class, we must specify
the rates at which requests arrive. We should also be
able to vary these rates so that we can consider dif-
ferent scenarios. To this end, we modified the SPEC-
jAppServer2002 driver to allow more flexibility in config-
uring the intensity of the workload generated. Specifi-
cally, the new driver allows us to set the number of con-
current order entry clients simulated, as well as their
average think time, i.e. the time they "think" after re-
ceiving a response from the system, before they send
the next request. In addition to this, we can specify the
number of planned production lines run in the manufac-
turing domain and the time they wait after processing a
work order before starting a new one. In this way, we
can precisely define the workload intensity and transac-
tion mix. We will later study in detail several different
scenarios under different transaction mixes and work-
load intensities.

5.3 Building a Performance Model

In this section, we build a queueing network model
of our SPECjAppServer2002 deployment environment.
We first define the model in a general fashion and then
customize it to our concrete workload scenarios. We
use a closed model, which means that for each instance
of the model the number of concurrent clients sending
requests to the system is fixed. Figure 4 shows a high-
level view of our queueing network model. For a formal

definition of our model’s queues in Kendall’s notation
see Appendix A.

B
2

C

B
1

A
1

A
2

A
N-1

A
N

L

D

p
1

p
2

p
5

p
6

p
3

p
4

p

7

p

8

1/N

1/N

1/N

1/N

Database Server

Application Server Cluster

Client

Production Line Stations

Figure 4: Queueing Network Model of the System

Following is a brief description of the queues used:
���

"Infinite Server" (IS) queue (also called delay re-
source) used to model the client machine which
runs the SPECjAppServer driver and emulates vir-
tual clients sending requests to the system. The
service time of order entry requests at this queue
is equal to the average client think time, while the
service time of WorkOrder requests is equal to the
average time a production line waits after process-
ing a work order before starting a new one. Note
that times spent on this queue are not part of sys-
tem response times.

������� �
	 �
"Processor Sharing" (PS) queues used to

model the CPUs of the N WebLogic servers.
� �
� ��� �

"Processor Sharing" (PS) queues used to
model the two CPUs of the database server.

� �
"First-Come-First-Served" (FCFS) queue used to
model the disk subsystem (made up of a single
100GB disk drive) of the database server.

� �
"Infinite Server" (IS) queue (delay resource) used
to model the virtual production line stations in the
manufacturing domain. Only WorkOrder requests
ever visit this queue. Their service time at the
queue corresponds to the average delay at the pro-
duction line stations simulated by the manufactur-
ing application during work order processing.

The model is a closed queueing network model with
the 5 classes of requests (jobs) defined in the previous
section. The behavior of requests in the model is de-
fined by specifying their respective routing probabilities
��� and service demands at each queue which they visit.
We discussed the service demands in the previous sec-
tion. To set the routing probabilities we examine the life-
cycle of client requests in the queueing network. Every

request is initially at the client queue C, where it waits for
a user-specified think time. After the think time elapses,
the request is routed to a randomly chosen queue

� � ,
where it queues to receive service at a WebLogic server
CPU. We assume that requests are evenly distributed
over the � WebLogic servers, i.e. each server is cho-
sen with probability ����� . Processing at the CPU may be
interrupted multiple times if the request requires some
database accesses. Each time this happens, the re-
quest is routed to the database server where it queues
for service at one of the two CPU queues

� �
or
� �

(each
chosen equally likely so that ��� � ��� �
	 � �

). Process-
ing at the database CPUs may be interrupted in case
I/O accesses are needed. For each I/O access the re-
quest is sent to the disk subsystem queue D and after
receiving service there, is routed back to the database
CPUs. This may be repeated multiple times depending
on routing probabilities �
� and ��� . Having completed
their service at the database server, requests are sent
back to the application server. Requests may visit the
database server multiple times during their processing,
depending on routing probabilities �

�
and �

�
. After com-

pleting service at the application server requests are
sent back to the client queue C. Order entry requests
are sent directly to the client queue (for them ��� � � ,
��� ��	

), while WorkOrder requests are routed through
queue L (for them � � ��	

, � � � �), where they are ad-
ditionally delayed for 1 second. This delay corresponds
to the 1 second delay at the 3 production line stations
imposed by the manufacturing application during work
order processing.

In order to set routing probabilities �
�
, �
�
, �
� and �
�

we need to know how many times a request visits the
database server during its processing and for each visit
how many times I/O access is needed. Since we only
know the total service demands over all visits to the
database, we assume that requests visit the database
just once and need a single I/O access during this visit.
This allows us to drop routing probabilities � � , �

�
, �
�

and ��� and leads us to the following simplified model
depicted in Figure 5.

B
2

C

B
1

A
1

A
2

A
N-1

A
N

L

D

p

3

p

4

p

7

p
8

1/N

1/N

1/N

1/N

Database Server

Application Server Cluster

Client

Production Line Stations

Figure 5: Simplified QN Model of the System

The following input parameters need to be supplied
before the model can be analyzed:

� Number of order entry clients (NewOrder, Change-
Order, OrderStatus and CustStatus).

� Average think time of order entry clients -
Customer Think Time.

� Number of planned production lines generating
WorkOrder requests.

� Average time production lines wait after process-
ing a work order, before starting a new one -
Manufacturing (Mfg) Think Time.

� Service demands of the 5 request classes at
queues

� � ,
���

, and
�

(see Table 1).

In our study we consider two types of deployment
scenarios. In the first one, large order lines in the manu-
facturing domain are turned off. In the second one, they
are running as defined in the benchmark workload. The
reason for this separation is that large order lines intro-
duce some asynchronous processing, which in general
is hard to model using queueing networks. We start with
the simpler case where we don’t have such processing
and then show (in section 5.4.4) how large order lines
can be integrated into our model.

5.4 Model Analysis and Validation

We now proceed to analyze several different instances
of the model introduced in the previous section and then
validate them by comparing results from the analysis
with measured data. We first consider the case with-
out large order lines and study the system in three sce-
narios representing low, moderate and heavy load, re-
spectively. In each case, we examine deployments with
different number of application servers - from 1 to 9.

Table 2 summarizes the input parameters for the
three scenarios that we consider.

Table 2: Model Input Parameters for the 3 Scenarios

Parameter Low Moderate Heavy

NewOrder Clients 30 50 100
ChangeOrder Clients 10 40 50
OrderStatus Clients 50 100 150
CustStatus Clients 40 70 50
Planned Lines 50 100 200
Customer Think Time 2 sec 2 sec 3 sec
Mfg Think Time 3 sec 3 sec 5 sec

5.4.1 Scenario 1: Low Load

A number of analysis tools for queueing networks have
been developed and are available free of charge for
noncommercial use [BGMT98]. We employed the

PEPSY-QNS tool [BK94] (Performance Evaluation and
Prediction SYstem for Queueing NetworkS) from the
University of Erlangen-Nuernberg. We chose PEPSY
because it supports a wide range of solution methods
(over 30) for product- and non-product-form queueing
networks. Both exact and approximate methods are
provided, which are applicable to models of consider-
able size and complexity. For the most part, we have
applied the multisum method [Bol89] for solution of
the queueing network models in this paper. However,
to ensure plausibility of the results, we cross-verified
them with results obtained from other methods such as
bol_aky and num_app [BK94]. In all cases the differ-
ence was negligible.

Table 3 summarizes the results we obtained for our
first scenario. We studied two different configurations -
the first one with 1 application server, the second with 2.
The table reports throughput (�) and response time (�)
for the 5 request classes, as well as CPU utilization (�)
of the application server and the database server. Re-
sults obtained from the model analysis are compared
against results obtained through measurements and the
modeling error is reported.

As we can see from the table, while throughput
and utilization results are extremely accurate, the same
does not hold to this extent for response time re-
sults. This is because when we run a transaction
mix, as opposed to a single transaction, some addi-
tional delays are incurred which are not captured by
the model. For example, delays result from contention
for data access (database locks, latches), processes,
threads, database connections, etc. The latter is of-
ten referred to as software contention, in contrast to
hardware contention (contention for CPU time, disk ac-
cess and other hardware resources). Our model cap-
tures the hardware contention aspects of system be-
havior and does not represent software contention as-
pects. While software contention may not always have
a big impact on transaction throughput and CPU utiliza-
tion, it usually does have a direct impact on transac-
tion response time and therefore real (measured) re-
sponse times are higher than the ones obtained from
the model. In [Men02] and [RS95] some techniques are
presented for estimating delays incurred from software
contention. However, they are rather approximative and
attempting to apply them to our scenario leads to tech-
nical difficulties stemming from the size and complex-
ity of our system. [KB03], [BBK97] discuss some more
accurate approaches for integrating both hardware and
software contention aspects into the same model. The
latter however suffer the state-space explosion problem
and are currently not applicable for systems of the size
of the one studied in this paper.

From Table 3 we see that the response time error for
requests with very low service demands (e.g. OrderSta-
tus and CustStatus) is much higher than average. This
is because the processing times for such requests are

very low (around 10ms) and the additional delays from
software contention, while not that high as absolute val-
ues, are high relative to the overall response times. The
results show that the higher the service demand of a re-
quest type, the lower the response time error is. Indeed,
the requests with the highest service demand (WorkO-
rder) always have the lowest response time error.

5.4.2 Scenario 2: Moderate Load

This time we have 260 concurrent clients interacting
with the system and 100 planned production lines run-
ning in the manufacturing domain. This is twice as much
as in the previous scenario. We study 2 deployments -
the first with 3 application servers, the second with 6.
Table 4 summarizes the results from the model analy-
sis. Again we obtain very accurate throughputs and uti-
lizations, and accurate response times. The response
time error does not exceed 35%, which is considered
acceptable in most capacity planning studies [MA00].

5.4.3 Scenario 3: Heavy Load

We have 350 concurrent clients and 200 planned pro-
duction lines in total. We consider three configurations
- with 4, 6 and 9 application servers, respectively. How-
ever, we slightly increase the think times in order to
make sure that our single machine database server is
able to handle the load. Table 5 summarizes the results
for this scenario. For models of this size, the available
algorithms do not produce reliable results for response
time and therefore we only consider throughput and uti-
lization in this scenario.

5.4.4 Scenarios with Large Order Lines

We now consider the case when large order lines in the
manufacturing domain are enabled. The latter are ac-
tivated upon arrival of large orders in the customer do-
main. Each large order generates a separate work or-
der, which is processed asynchronously at one of the
large order lines. As already mentioned, this poses a
difficulty since queueing networks provide very limited
possibilities for modeling this type of asynchronous pro-
cessing. As shown in [KB03], other state-space-based
models such as Queueing Petri Nets are much more
powerful in such situations. However, as discussed in
section 3, they suffer a state-space explosion problem
and are currently not applicable for systems of the size
and complexity of SPECjAppServer2002. Therefore, we
don’t have a choice but to somehow try to integrate the
large order lines into our queueing network model.

Since large order lines are always triggered by
NewOrder transactions (for large orders) we can add
the load they produce to the service demands of
NewOrder requests. To do that we rerun the NewOrder
experiments with the large order lines turned on.
The additional load leads to higher utilization of sys-
tem resources and in this way impacts the measured

Table 3: Analysis Results for Scenario 1 - Low Load

1 Application Server 2 Application Servers
METRIC Model Measured Error Model Measured Error
NewOrder Throughput 14.59 14.37 1.5% 14.72 14.49 1.6%
ChangeOrder Throughput 4.85 4.76 1.9% 4.90 4.82 1.7%
OrderStatus Throughput 24.84 24.76 0.3% 24.89 24.88 0.0%
CustStatus Throughput 19.89 19.85 0.2% 19.92 19.99 0.4%
WorkOrder Throughput 12.11 12.19 0.7% 12.20 12.02 1.5%

NewOrder Response Time 56ms 68ms 17.6% 37ms 47ms 21.3%
ChangeOrder Response Time 58ms 67ms 13.4% 38ms 46ms 17.4%
OrderStatus Response Time 12ms 16ms 25.0% 8ms 10ms 20.0%
CustStatus Response Time 11ms 17ms 35.2% 7ms 10ms 30.0%
WorkOrder Response Time 1127ms 1141ms 1.2% 1092ms 1103ms 1.0%

WebLogic Server CPU Utilization 66% 70% 5.7% 33% 37% 10.8%
Database Server CPU Utilization 36% 40% 10% 36% 38% 5.2%

Table 4: Analysis Results for Scenario 2 - Moderate Load

3 Application Servers 6 Application Servers
METRIC Model Measured Error Model Measured Error
NewOrder Throughput 24.21 24.08 0.5% 24.29 24.01 1.2%
ChangeOrder Throughput 19.36 18.77 3.1% 19.43 19.32 0.6%
OrderStatus Throughput 49.63 49.48 0.3% 49.66 49.01 1.3%
CustStatus Throughput 34.77 34.24 1.5% 34.80 34.58 0.6%
WorkOrder Throughput 23.95 23.99 0.2% 24.02 24.03 0.0%

NewOrder Response Time 65ms 75ms 13.3% 58ms 68ms 14.7%
ChangeOrder Response Time 66ms 73ms 9.6% 58ms 70ms 17.1%
OrderStatus Response Time 15ms 20ms 25.0% 13ms 18ms 27.8%
CustStatus Response Time 13ms 20ms 35.0% 11ms 17ms 35.3%
WorkOrder Response Time 1175ms 1164ms 0.9% 1163ms 1162ms 0.0%

WebLogic Server CPU Utilization 46% 49% 6.1% 23% 25% 8.0%
Database Server CPU Utilization 74% 76% 2.6% 73% 78% 6.4%

Table 5: Analysis Results for Scenario 3 - Heavy Load

4 App. Servers 6 App. Servers 9 App. Servers
METRIC Model Msrd. Error Model Msrd. Error Model Msrd. Error
NewOrder Throughput 32.19 32.29 0.3% 32.22 32.66 1.3% 32.24 32.48 0.7%
ChangeOrder Throughput 16.10 15.96 0.9% 16.11 16.19 0.5% 16.12 16.18 0.4%
OrderStatus Throughput 49.59 48.92 1.4% 49.60 49.21 0.8% 49.61 49.28 0.7%
CustStatus Throughput 16.55 16.25 1.8% 16.55 16.24 1.9% 16.55 16.46 0.5%
WorkOrder Throughput 31.69 31.64 0.2% 31.72 32.08 1.1% 31.73 32.30 1.8%

WebLogic Server CPU Utilization 40% 42% 4.8% 26% 29% 10.3% 18% 20% 10.0%
Database Server CPU Utilization 87% 89% 2.2% 88% 91% 3.3% 88% 91% 3.3%

NewOrder service demands (see Table 6). While this
incorporates the large order line activity into our model,
it changes the semantics of NewOrder jobs. In addition
to the NewOrder transaction load, they now also include
the load caused by large order lines. Thus, performance
metrics (throughput, response time) for NewOrder re-
quests no longer correspond to the respective metrics of
the NewOrder transaction. Therefore, we can no longer

quantify the performance of the NewOrder transaction
on itself. Nevertheless, we can still analyze the perfor-
mance of other transactions and gain a picture of the
overall system behavior. Table 7 summarizes the re-
sults for the three scenarios with large order lines en-
abled. For lack of space, this time we only look at one
configuration per scenario: the first one with 1 applica-
tion server, the second with 3 and the third with 9.

Table 7: Analysis Results for Scenarios with Large Order Lines

Low/1AS Moderate/3AS Heavy/9AS
METRIC Model Error Model Error Model Error
ChangeOrder Throughput 4.79 6.4% 19.09 3.5% 15.31 4.5%
OrderStatus Throughput 24.77 2.9% 49.46 2.3% 48.96 3.1%
CustStatus Throughput 19.83 2.4% 34.67 2.1% 16.37 1.9%
WorkOrder Throughput 11.96 5.7% 23.43 2.6% 29.19 1.2%

WebLogic Server CPU Utilization 80% 0.0% 53% 1.9% 20% 0.0%
Database Server CPU Utilization 43% 2.4% 84% 2.4% 96% 1.0%

Table 6: NewOrder Service Demands with the Large
Order Lines running

TX-Type WLS-CPU DBS-CPU DBS-I/O

NewOrder 23.49ms 21.61ms 1.87ms

5.5 Conclusions from the Analysis

We used our queueing network model to predict system
performance in several different configurations varying
the workload intensity and the number of application
servers available. The results enable us to give answers
to the questions we started with in section 5.1. For each
configuration we obtained approximations for the aver-
age request throughput, response time and server uti-
lization. Depending on the service level agreements
(SLAs) and the expected workload intensity, we can
now determine how many application servers we need
in order to guarantee adequate performance. We can
also see for each configuration which component is
mostly utilized and thus could become a potential bot-
tleneck (see Figure 6). In scenario 1, we saw that by
using a single application server, the latter could easily
turn into bottleneck since its utilization would be twice
as high as that of the database server. The problem is
solved by adding an extra application server. In scenar-
ios 2 and 3, we saw that with more than 3 application
servers as we increase the load, the database CPU uti-
lization approaches 90%, while the application servers
remain in all cases less than 50% utilized. This clearly
indicates that, in this case, our database server is the
bottleneck.

6 Summary and Conclusions

This paper discussed the different approaches to perfor-
mance analysis of large J2EE applications, focusing on
analytical modeling, since it is usually much more cost-
effective than simulation or load-testing. We studied
a real-world J2EE application of a realistic complexity
and modeled it using a non-product-form queueing net-
work. With the help of the latter, we analyzed several
different deployment environments under different work-
load intensities. In each case, we used the model
to predict system performance (transaction throughput,

0 20 40 60 80 100

1AS / LOW

*1AS / LOW

2AS / LOW

3AS / MODERATE

*3AS / MODERATE

6AS / MODERATE

4AS / HEAVY

6AS / HEAVY

9AS / HEAVY

*9AS / HEAVY

DATABASE CPU
WEBLOGIC CPU * WITH LARGE ORDER LINES

Figure 6: Server Utilization in Different Scenarios

response time and CPU utilization) and, then, vali-
dated results through measurements. The model was
extremely accurate in predicting transaction through-
put and CPU utilization, and a bit less accurate in pre-
dicting transaction response time. The average mod-
eling error for throughput was 2%, for CPU utilization
6% and for response time 18%. In the course of the
study, we discussed the problems that arise from limited
model expressiveness, on the one hand, and from ap-
plication size and complexity, on the other hand. We
proposed different methods to address these problems
and illustrated them through practical examples.

In spite of the limitations of queueing network models
to deal with software contention and the high degree of
mistrust with which the J2EE industry looks at analyti-
cal models in general, this paper demonstrated that the
latter are very powerful as a performance prediction tool
and lend themselves well to modeling J2EE applications
of a realistic size and complexity. This can be exploited
in the capacity planning process for large e-business
systems.

Acknowledgments

We gratefully acknowledge the cooperation of
Dr. Gunter Bolch from the University of Erlangen in pro-
viding us with the PEPSY-QNS tool. We also acknowl-
edge the use of BEA’s WebLogic application server and

the support of our colleague Matthias Meixner from the
University of Darmstadt. Last, but not least, we would
like to thank Prof. Ethan Bolker from the University
of Massachusetts at Boston and Margaret Greenberg
from Grunberg Haus for helping us to improve the
paper and shape it for a CMG audience.

References

[Bau93] F. Bause. Queueing Petri Nets - A formalism
for the combined qualitative and quantitative
analysis of systems. In Proc. of the 5th In-
ternational Workshop on Petri Nets and Per-
formance Models, Toulouse (France), 1993.

[BBK97] F. Bause, P. Buchholz, and P. Kemper. In-
tegrating Software and Hardware Perfor-
mance Models Using Hierarchical Queueing
Petri Nets. In Proc. of the 9. ITG / GI - Fach-
tagung Messung, Modellierung und Bewer-
tung von Rechen- und Kommunikationssys-
temen, (MMB’97), Germany, 1997.

[BGMT98] G. Bolch, S. Greiner, H. De Meer, and K. S.
Trivedi. Queueing Networks and Markov
Chains - Modelling and Performance Eval-
uation with Computer Science Applications.
John Wiley & Sons, Inc., 1998.

[BK94] G. Bolch and M. Kirschnick. The Perfor-
mance Evaluation and Prediction SYstem
for Queueing NetworkS - PEPSY-QNS.
Technical Report TR-I4-94-18, University of
Erlangen-Nuremberg, Germany, June 1994.���������	����
�
�
�
������������������������ ���!��"$#���%�����&�#����
'�#���(�����)�#�*��,+���(�-�(�.�/���#��$���0#���+�12�3�����,%

.

[BK02] F. Bause and F. Kritzinger. Stochastic Petri
Nets - An Introduction to the Theory. Vieweg
Verlag, second edition, 2002.

[Bol89] G. Bolch. Performance Evaluation of Com-
puter Systems with the help of Analytical
Queueing Network Models. Teubner Verlag,
Stuttgart, 1989.

[KB02] S. Kounev and A. Buchmann. Improv-
ing Data Access of J2EE Applications by
Exploiting Asynchronous Processing and
Caching Services. In Proc. of the 28th In-
ternational Conference on Very Large Data
Bases - VLDB2002, 2002.

[KB03] S. Kounev and A. Buchmann. Performance
Modelling of Distributed E-Business Appli-
cations using Queueing Petri Nets. In Proc.
of the 2003 IEEE International Symposium
on Performance Analysis of Systems and
Software - ISPASS2003, 2003.

[MA98] D. Menasce and V. Almeida. Capacity Plan-
ning for Web Performance: Metrics, Models
and Methods. Prentice Hall, Upper Saddle
River, NJ, 1998.

[MA00] D. Menasce and V. Almeida. Scaling for
E-Business - Technologies, Models, Perfor-
mance and Capacity Planning. Prentice
Hall, Upper Saddle River, NJ, 2000.

[Men02] D. Menasce. Two-Level Iterative Queue-
ing Modeling of Software Contention. In
Proceedings of the 10th IEEE Intl. Symp.
on Modeling, Analysis and Simulation of
Computer and Telecommunications Sys-
tems (MASCOTS’02), 2002.

[RS95] J. Rolia and K. Sevcik. The method of lay-
ers. IEEE Tr. Software Eng., 21(8):689–700,
1995.

[Sta02] Standard Performance Evaluation Corpora-
tion (SPEC). SPECjAppServer2002 Docu-
mentation. Specifications, November 2002.���������	����
�
�
��4+5��#0*6�7����&�����+�&���)�8�����.�#���9�#����

.

[Sun] Sun Microsystems, Inc. Enterprise Jav-
aBeans 1.1 and 2.0. Specifications.

���������
����)���9��2�4+������4*��:�!��������'���*5�,+���#�)�;$�

.

[Tri02] K. S. Trivedi. Probability and Statistics with
Reliability, Queueing and Computer Science
Applications. John Wiley & Sons, Inc., sec-
ond edition, 2002.

Appendix A

Table 8: Formal Queue Definitions

Queue Type Description<>=4?@? <�A BDC4EFC�GHBJI>K
WLS CPUsL =�M L�N BDC4EFC�GHBJI>K
DBS CPUsO BDC4EFC�GHBJP>Q�P>K
DBS Disk SubsystemQ BDC4EFC�RSBUT�K
Client MachineV BDC4EFC�RSBUT�K
Prod. Line Stations

Table 8 presents a formal specification of our model’s
queues (i.e. queueing stations) in Kendall’s notation.
With queueing stations defined in this way, we end
up with a non-product-form queueing network. Note
that we could have chosen to model the CPUs of the
database server using a single W ��X ��YZW\[^] queue in-
stead of two separate W �_X � �DW`[^] queues. However,
many efficient analysis techniques for non-product-
form queueing networks do not support W �_X ��abW\[^]
queues and therefore we chose the first option so that
we have more flexibility when analyzing our models.

