
PAPER 3187: PETSTORE-WS: MEASURING THE PERFORMANCE
IMPLICATIONS OF WEB SERVICES ∗

Kai S. Juse , S. Kounev and A. Buchmann

Department of Computer Science
Darmstadt University of Technology, Germany

{ksjuse,skounev,buchmann}@informatik.tu-darmstadt.de

Web Services are increasingly used to enable loosely coupled integration among hetero-
geneous systems but are perceived as a source of severe performance degradation. This
paper looks at the impact on system performance when introducing Web Service inter-
faces to an originally tightly coupled application. Using two implementation variants of
Sun’s Java Pet Store application, one based strictly on the J2EE platform and the other
implementing some interfaces as Web Services, performance is compared in terms of the
achieved overall throughput, response times and latency.

1 Introduction
Web Services are a novel kind of Web applications.
They are self-contained, self-describing, modular ap-
plications that can be published, located, and invoked
across the Web. Web services perform functions
which can be anything from simple requests to com-
plicated business processes [Tid00]. More precisely,
a Web Service is a software entity that is made avail-
able over the Internet and uses a standardized XML
messaging system for communication [Cer02]. The
definition and description of the public interfaces is
also done using XML [BCF+03].

Web Services facilitate application to application
communication for building integrated systems of
Web application components. As a member of the
family of service-oriented architectures (SOA), it en-
courages loose coupling of participating applications.
The large-scale use of XML technologies is the foun-
dation for the platform independence of Web Ser-
vices, which makes it particularly suitable for the inte-
gration of heterogeneous systems. However, the use
of complex XML mechanisms is also often perceived
as a potential source of Web Service performance
degradation. To study the performance implications
of the use of Web Services for application integration,
we analyze and compare the behavior of a system
using communications purely based on the Java Mes-
sage Service (JMS) API to a variation of that system
employing Web Services on some of its interfaces.

∗This work was partially funded by BEA Systems, Inc. as part of
the project "Capacity Planning and Performance Analysis of J2EE
Applications and Web Services" and the Deutsche Forschungsge-
meinschaft (DFG) as part of the PhD program "Enabling Technolo-
gies for E-Commerce" at Darmstadt University of Technology.

In section 2, we introduce the Java Pet Store appli-
cation as the subject of our experiments. We describe
its structure and important aspects of its mode of op-
eration. Section 3 specifies the setup and environ-
ment of the experiments together with the load sce-
nario and the performance metrics used. The mea-
surement results are presented in section 4, followed
by summary and conclusions in section 5.

2 The Java Pet Store Application
The Java Pet Store Sample Application [Sund] was
developed within the Java BluePrints Program [Suna]
at Sun Microsystems, Inc. It demonstrates how to use
the capabilities of the J2EE platform to develop ro-
bust, scalable and portable e-business applications.
It comes with full source code and documentation,
allowing application developers to experiment with
J2EE technologies and learn how to use them effec-
tively to build their own enterprise solutions. Pet Store
can also be considered as a reference implementa-
tion of numerous established design patterns [Sunb]
and best practices for enterprise Java programming.
In addition to standard J2EE interfaces, starting with
version 1.3.1, Pet Store also includes Web Service
interfaces to some of its services. The goal is to
showcase the use of Web Services within the J2EE
platform. Following is a brief description of Pet Store
based on [Sund] and [SSJt02].

2.1 Business Problem Modelled

The Java Pet Store application models a typical
e-business — an online store that sells products (in
this case animals) to customers. Conceptually, the

business divides into two functional units: Web Site
and Fulfillment Center.

The Web site presents an online interface to the
store, through which customers can shop and place
orders. When a customer completes an order, the
latter is sent to the order fulfillment center for pro-
cessing. Hence the Web site functional unit can be
thought of as the front end of the enterprise. The ful-
fillment center, on the other hand, has an order ful-
fillment component and a supplier component. The
fulfillment center processes orders based on the en-
terprise’s business rules, manages financial transac-
tions, and arranges for products to ship to customers.
Because not all products are in stock at any given mo-
ment, order processing may occur over a period of
time. Administrators and other suppliers may interact
with the fulfillment center. This portion of the business
is referred to as the back end. Although the supplier
component is part of the sample application, it could
just as easily be a service external to the application.

Versions of Pet Store prior to 1.3 were examples
of a monolithic application that handled both cus-
tomer interactions at the Web site as well as order
tracking and administration. Real-world enterprise
applications, however, are seldom single, monolithic
systems. Most enterprise applications must coop-
erate with multiple external systems such as legacy
databases, enterprise resource planning (ERP) sys-
tems or Web Services of business partners. There-
fore, in order to make things more realistic, starting
with version 1.3, the Pet Store application was refac-
tored into separate modules and the ability to interact
with multiple external suppliers was added. The result
is a decoupled enterprise architecture that can inter-
operate with existing data sources and business part-
ners’ systems, all built on top of the J2EE platform.
The new sample application comprises four separate
sub-applications, each of which is a J2EE application
[SSJt02]:

1. Pet Store E-Commerce Web Site: A Web appli-
cation that shoppers use to purchase merchan-
dize through a Web browser.

2. Pet Store Administration Application: A Web ap-
plication that enterprise administrators use to
view sales statistics and manually accept or re-
ject orders. While being a Web application, it fea-
tures a rich client that uses XML messaging in
addition to a plain HTML interface.

3. Order Processing Center (shortened "OPC"):
A process-oriented application that manages or-
der fulfillment by providing the following services
to other enterprise participants:

• Receives and processes orders placed
through the Pet Store Web Site. Orders are
received as XML documents.

• Provides the PetstoreAdmin application with
order data using XML messaging over
HTTP.

• Sends email to customers acknowledging
orders using JavaMail.

• Sends purchase orders (described as XML
documents) to suppliers via JMS.

• Maintains purchase order database.

4. Supplier Application (shortened "Supplier"): A
process-oriented application that manages ship-
ping products to customers by providing the fol-
lowing services:

• Receives purchase orders (in the form of
XML documents) from the OPC via JMS.

• Ships products to customers.

• Provides manual inventory management
through a Web-based interface.

• Maintains inventory database.

Figure 1 depicts the most important Pet Store sub-
applications and shows the mechanisms and proto-
cols used for communication between them.

Web Site Front End

Supplier Application

Customers

Order Processing
Center

HTML / HTTP

XML / JMSXML / JMS

Figure 1: Main Pet Store Sub-Applications

2.2 Pet Store’s Asynchronous,
Document-Oriented Architecture

The Order Processing Center defines the business
process for handling purchase orders placed at the
Web site [SSJt02]. The business process consists
of a workflow, which is a sequence of steps with
transitions between them. Transitions between steps
are handled by special classes called transition dele-
gates, which allows for flexibility if the type of com-
munication between steps is to change. Pet Store
uses a document-oriented business process to coor-
dinate its internal workflow and to communicate with

its supplier application. Transition delegates pass
XML documents between workflow steps by placing
JMS messages in message queues (or topics). The
JMS queues are the transition points between steps.
Messages arriving in the queues are processed asyn-
chronously by Message-Driven Beans (MDBs). The
asynchronous architecture allows components to call
each other without having to block and wait for a re-
sponse.

Purchase Order
Queue

Purchase
Order MDB

Order
Approval
Queue

Mail Order
Approval MDB

Mail Order
Approval Queue

Mailer
MDB

Invoice
MDB

Mailer
Queue

Order Processing Center

Order
Approval

MDB

Mail
Invoice
MDB

Invoice
Topic

Supplier

Supplier Order
Queue

Supplier
Order MDB

Figure 2: Message Flow in the OPC and Supplier
[Sund]

Figure 2 depicts the flow of messages upon recep-
tion of a purchase order at the OPC. The OPC re-
ceives the order through its purchase order queue,
validates it and passes it to the order approval queue.
The order approval MDB confirms if funds are avail-
able for the order. Once the order is approved, it is
sent to the supplier. The latter receives the order
through its supplier order queue, validates it and ships
products to the customer. It also creates an invoice
and returns it to the OPC by sending a JMS message
to the invoice topic. Two MDBs, invoice and mail in-
voice, both listen to the invoice topic and process the
arrived invoice. The invoice MDB triggers the OPC’s
invoice processing workflow. The mail invoice MDB
sends a message to the mailer queue in order to no-
tify the customer by email that his order is completed.

2.3 Web Services in Pet Store

As mentioned earlier, starting with version 1.3.1,
Pet Store includes Web Service interfaces to some
of its components. In particular, Web Service inter-
faces to the supplier application are provided, allow-
ing for the communication with it to take place through
Web Services. This decouples the supplier from the
OPC enabling for integration with external suppliers
running on non-J2EE-based platforms.

Figure 3 shows the new message flow leveraging
Web Services for the communication with the sup-

Purchase Order
Queue

Purchase
Order MDB

Order
Approval
Queue

Mail Order
Approval MDB

Mail Order
Approval Queue

Mailer
MDB

Invoice
MDB

Mailer
Queue

Order Processing Center

Order
Approval

MDB

Web Service
Transition
Deligate

Mail
Invoice
MDB

Invoice
Topic

Invoice
Receiver Web

Service
Endpoint

Supplier
Order

Receiver
Web Service

Endpoint

Supplier
Order MDB

Supplier

Supplier
Order
Queue

Web Service
Transition
Deligate

Figure 3: Message Flow when using
Web Services[Sund]

plier. Instead of sending orders directly to the supplier
through JMS, the OPC now sends them to a Web Ser-
vice endpoint in the supplier using a modified transi-
tion delegate. The supplier Web Service endpoint re-
ceives orders as XML documents and validates them
against a public XML schema. It then places them
in the supplier order queue, which triggers the usual
order processing workflow.

Similarly, instead of sending invoices directly to
the OPC through JMS, the supplier now sends them
through a Web Service endpoint in the OPC. The lat-
ter receives incoming invoices, validates them against
a public XML schema, and places them in the invoice
topic, triggering the usual invoice processing work-
flow.

The new Pet Store code can be compiled in two
variants. In the first one (JMS variant), no Web Ser-
vices are used and communication with the supplier is
done by directly sending messages to JMS targets. In
the second one (Web Service variant), Web Services
are used as explained above.

2.4 Use of Transactions

Pet Store uses atomic transactions throughout its
sub-applications to ensure data integrity and reliable
order processing. The OPC and the supplier sub-
application execute workflow steps in separate trans-
actions (workflow transactions). Each workflow trans-
action has the reception of the process step’s activat-
ing message as the first operation and continues with
the business actions taken by the respective MDB.
The transaction ends after the transition delegate has
performed the necessary operations (usually sending
of a JMS message) to activate the next workflow step.
Any error during the execution of a processing step
causes the workflow transaction to be rolled back and
all changes to be undone. The initiating message re-
mains in the queue available for further processing

attempts.
Messages sent to queues or topics for activation of

workflow steps only become visible after the transac-
tions from which they are sent commit. This is due to
the isolation property of transactions and ensures that
order processing steps are executed strictly sequen-
tially. In the Web Service variant, however, the above
behavior cannot be guaranteed for the workflow steps
that are activated through Web Service calls (transi-
tion from OPC to supplier and back). While trans-
actions are started in the same manner as in the
JMS variant, the Web Service calls do not transport
the transaction context across the OPC/supplier in-
terface. As a result, actions taken at the Web Ser-
vice endpoints do not participate in the calling trans-
actions, which can be considered a functional weak-
ness. While errors in executing the Web Service calls
and failures during the actions at the Web Service
endpoints are correctly propagated back to the caller
causing it to abort the transaction, the converse is
not true. Should an error occur in an action after a
successful Web Service call or at commit time of the
transaction, the necessary roll back cannot be propa-
gated to the opposite side of the OPC/supplier inter-
face.

Although the described correctness problem does
not become manifest in our experiments and no er-
rors occur during order processing, the lack of trans-
action context propagation still has a performance
implication. Because Web Service calls across the
OPC/supplier interface do not participate in any trans-
actions, the isolation property is not maintained with
respect to the visibility of sent messages. This allows
supplier orders to arrive at the supplier business logic
prior to completion of all business actions in the orig-
inating OPC processing steps. This does not pose a
correctness problem per se under reasonable execu-
tion timings1, however, it allows the supplier to begin
processing submitted orders earlier. Since the transi-
tion between the OPC and supplier is part of the time
critical path from order acceptance to completion, it
affords a response time advantage for the Web Ser-
vice variant.

To provide a level playing field for performance
comparisons between the JMS and Web Service vari-
ants, the above problem had to be addressed. The
preferred solution for the Web Service variant would
be to adopt the transactional behavior of the JMS
variant. Unfortunately, standards-based Web Ser-
vice transaction technology is not yet fully devel-
opped. Currently, no widely supported standards
for transactional Web Services exist and no products
are available, yet. However, specifications to sup-
port transactions across Web Service bounderies are

1The sending workflow transaction has to complete before the
whole supplier business logic gets executed and sends the invoice
back to the OPC application.

proposed and being evaluated (WS-Transaction/WS-
Coordination [CCC+02, CCF+02], BTP [OAS02]).
With the products currently available, this issue could
only be resolved by modifying the JMS variant to be-
have like the Web Service variant. Starting from the
JMS variant as originally published by the BluePrints
program [Suna] (now also referred to as the original
JMS variant), we made the the BluePrints program
[Suna] (hereafter referred to as original JMS variant),
we made the following changes. The order approval
transition delegate was modified to send its order to
the supplier application outside the running transac-
tion. The same was done for the symmetrical case
of the supplier order transition delegate sending its
invoice back to the OPC application, so that both vari-
ants can take advantage of the early availability of
messages sent across the OPC/supplier interface.

3 Experimental Setting

3.1 Test Scenario

In this section we take a look at the workload used as
a basis for our experiments. Since our goal was to
study the effect of using Web Services on Pet Store’s
overall performance, we chose a load profile which
puts the stress on the back end, where Web Ser-
vices come into play. To this end, we generate heavy
purchasing activity by simulating goal-oriented cus-
tomers. Each customer enters the store, selects a
product from the catalog and then proceeds to check-
out to order it. The customer is simulated using a
client thread that goes through the steps shown in
Figure 4. Each step corresponds to one HTTP re-
quest (the first 6 GET, the remaining POST) and the
whole scenario corresponds to one user session. We
used the Siege tool [Ful02] (version 2.57b2) to gen-
erate the load. The tool creates a client thread for
each user simulated to repeatedly execute the sce-
nario, putting a uniformly distributed delay of 1-4 sec-
onds between requests. This should correspond to a
simplified representation of the user’s think time.

3.2 Deployment Environment

We deployed Pet Store in the deployment
environment depicted in Figure 5, using
Web Logic Server 7.0 (SP1) as a J2EE container and
Oracle 9i (9.0.1) as a database server.

The database server is used for persisting appli-
cation data (entity beans) and JMS messages. The
client machine is used to generate the load (using the
Siege tool) and control the progression of the exper-
iments. Additionally, the client machine is running a
mail server, used by the application server for sending
Pet Store’s email notifications to customers about the
progress of their orders. Exim version 3.35 [Met03]
was employed as a Message Transport Agent (MTA).

Add Item to Cart and Proceed to Checkout

Select Item to View

Select Product

Choose a Product Category

Go to Pet Store’s Entry Page

Authenticate User

Display Order Information

Place Order

Figure 4: Test Scenario

Client

100 MBit Ethernet LAN

Application
Server

Database
Server

2 x Pentium III 1266 MHz CPUs
1 GB RAM
Microsoft Windows 2000 SP2

1 x AMD Athlon 700MHz CPU
512 MB RAM
Debian GNU/Linux 3.0 (2.4.19)

1 x AMD XP 1700+ CPU
1 GB RAM
Red Hat Linux 8.0 (2.4.18)

Figure 5: Deployment Environment

3.3 Measurements Taken

In order to quantify system performance under the
considered workload, different measurements were
taken during the experiments. For this purpose,
Pet Store was instrumented to log timestamps at dif-
ferent points during the execution (measuring points)
and performance metrics were calculated based on
differences between timestamps.

The first measurement determines the start of an
order’s processing and is done in Pet Store’s front end
right after the reception of an order before it is for-
warded to the OPC. The second measurement deter-
mines the end of an order’s processing and is done
in the Mailer MDB at the point an email is sent to
the client to confirm order completion. The difference
between timestamps taken at these points, gives us
the total order processing time, also referred to as the
response time. Dividing the number of orders pro-
cessed during an experiment by the time elapsed be-
tween its start and end, we obtain the throughput.

To further monitor the behavior of the back end,
three additional measurements were done. The first

one determines the time at which the OPC calls the
supplier to submit a new order, i.e. the beginning of
the calling operation. When running in JMS mode this
is the time of sending a JMS message to the supplier
order queue. When running in Web Service mode, it
is the time of calling the supplier Web Service end-
point. The second measurement determines the time
at which the Web Service call (or the sending of the
new order, respectively) completes. The difference
between timestamps taken at these points, gives us
the time for which the OPC has blocked when calling
the supplier. We refer to this time as the call time.

The last measurement is done in the supplier or-
der MDB and determines the time of arrival of an or-
der as an XML document and the start of its process-
ing. The time elapsed between the beginning of a call
to submit an order to the supplier and the start of its
processing will be referred to as the latency.

4 Performance Analysis

To gather the measurements for our analysis, we per-
formed three series of experiments. Each series con-
sists of six experiments characterized by the num-
ber of client threads used for simulating concurrent
customers (15, 25, 40, 60, and 100 client threads,
respectively). The first series represents the base
case and uses the modified JMS mode (referred to
as "JMS" in the following figures). Send operations at
the OPC/supplier interface in this mode are not part of
the workflow transactions as described in section 2.4).
The second series covers the Web Service variant of
Pet Store ("Web Service") .

Finally, the third series uses the original JMS
variant of Pet Store as published by the BluePrints
program, i.e. the JMS send operations at the
OPC/supplier interface are part of their respective
workflow transactions. These measurements repre-
sent the typical operational behavior of the Pet Store,
but cannot be used for comparison with the Web Ser-
vice variant as discussed in section 2.4. They are
presented to highlight the performance differences of
our base case system (JMS) with respect to the fully
transactional, original JMS mode system.

The CPU utilizations on the client machine and
database server machine were monitored during all
the experiment runs and stayed below 10 and 35 per-
cent, respectively, over the range of all simulated load
levels.

4.1 Throughput

Figure 6 shows the throughput results (as the number
of completed orders per minute) for each experiment
in JMS and Web Service mode. The original JMS
mode is not depicted as it exhibits identical throughput
characteristics as the modified JMS mode (less than
1 percent deviation) over the full load range.

0

50

100

150

200

20 40 60 80 100

Tr
an

sa
ct

io
ns

/m
in

client threads

Modified JMS Web Service

Figure 6: Throughput Measurements

The JMS mode achieves the highest throughput
of 163 orders per minute with 80 concurrent client
threads. Under the same load, the Web Service vari-
ant reaches an about 5 percent lower value of 155
orders per minute. Under light to moderate load of up
to 40 client threads, both variants scale linearly and
exhibit almost identical performance. The differences
remain below 1 percent in this load range, but we ob-
serve about 10 percent higher CPU time demand for
the Web Service variant. This difference in resource
consumption has no impact on throughput, as enough
CPU time is readily available at that point. In the load
range beyond 40 client threads towards system sat-
uration, the higher CPU consumption begins to have
an impact on throughput. The point of system satu-
ration where no additional increase in throughput can
be achieved is reached at a load of 80 client threads in
the JMS case. Due to the higher CPU time demand of
the Web Service variant, it reaches that point already
at a load close to 70 threads and thus lags behind in
maximum throughput.

4.2 Response Time

When considering the average total time for process-
ing an order (Figure 7), it stands out that the response
time does not grow beyond all limits under increasing
load. The system remains in a stable state in which
the number of orders injected into the system per unit
of time equals the number of orders completed. This
relates to an observation of the number of orders in
the different stages of processing. The typical length
of the queues involved in order processing did not
grow beyond 2 messages even under extreme load.
The Mail queue is the sole exception with a length of
5 messages due to the dispatching of three messages
during the course of processing one order.

In addition to the well balanced breakdown of the
order processing steps, the synchronous order injec-
tion has a stabilizing effect on the response time. The
increase in the number of client threads, through-

0

500

1000

1500

2000

20 40 60 80 100

T
im

e/
Tr

an
sa

ct
io

n
[m

s]

client threads

Modified JMS Web Services

Figure 7: Response Time Meassurements

put and resource utilization causes the Pet Store
front end to present a less responsive interface to the
client. The increasing response times of HTTP re-
quests to the front end slow down the scenario execu-
tion and thus the eventual injection of an order. This
effect attenuates the injection rate increase of addi-
tional client threads such that the effective injection
rate does not grow beyond the application server’s ca-
pacity.

In contrast to throughput, the average response
time exhibits more pronounced differences between
the JMS and Web Service variant. The response time
under light load (15 client threads) starts off with a
50 ms penalty (11 percent) for the Web Service mode
at about 500 ms. The additional time spent in order
processing under low system utilization can be at-
tributed entirely to the higher OPC/supplier interface
latency of the Web Service variant (see section 4.3).

The faster growing CPU utilization of the Web Ser-
vice variant under increasing load causes the re-
sponse time to increase faster as well. The higher
CPU consumption for Web Service processing leaves
less CPU time for other tasks, so that their process-
ing time increases as well — a secondary effect of
the use of Web Services. Together with the increased
latency, this leads to the penalty for the Web Ser-
vice variant reaching up to 50 percent at 40 client
threads. As the load increases further to 60 client
threads, the response time difference stays mostly
constant at 400 ms due to the stabilization effect of
the Pet Store setting in under heightened CPU uti-
lization. The Web Service variant already reaches its
capacity limit at that point and has a response time
of 1850 ms, exhibiting a 25 percent increase over the
JMS variant. The application server’s CPU resources
are saturated at that point, while the database server
shows 35 percent CPU utilization. The JMS variant
reaches that state at a load of 80 client threads, at
which point the response time difference falls back
to about 13 percent. The response time advantage

of the JMS variant melts off quickly in the 60 to 80
client threads load range as a result of the JMS vari-
ant no longer enjoying a non-saturated CPU while the
Web Service variant already suffers from scarce CPU
time at this load interval.

0

500

1000

1500

2000

20 40 60 80 100

T
im

e/
Tr

an
sa

ct
io

n
[m

s]

client threads

Modified JMS Original JMS

Figure 8: Response Time Meassurements

The comparison between the modified JMS variant
and the original JMS variant (Figure 8) shows similar
response time characteristics. The original JMS vari-
ant line runs parallel to the JMS variant at about 200-
250 ms higher values except for light loads, where
the difference amounts to 25 ms. The system mon-
itor readings from the application server show that
the CPU utilization is virtually identical for these vari-
ants. Reasons for the response time discrepancy can
be found in the impact of the modifications on the
OPC/supplier interface latency.

4.3 Latency and Call Time

While throughput and response time characterize the
speed of order processing as a whole, the latency
and call time are directly related to the OPC/supplier
communication and are thus significantly affected by
the introduction of Web Service interfaces. Figures 9
and 11 show the call time and latency measurement
results of the modified and original JMS variants.

Considering the latency and call time of the mod-
ified JMS variant, it strikes that messages sent, ar-
rive at their destinations (latency — Figure 11, dia-
mond mark) prior to the sending entities having com-
pleted send operations (call time — Figure 9, diamond
mark). The reasons for this become clear from look-
ing at Figures 10, which shows the sequence of ac-
tions performed when sending JMS messages to the
supplier.

The non-transacted send procedure can only re-
turn to the caller after the messaging system can
guarantee that the message will be delivered at some
point. The configuration at hand persists the mes-
sage in a database to provide this guarantee without

0

50

100

150

200

250

20 40 60 80 100

C
al

lT
im

e
[m

s]

client threads

Modified JMS Original JMS

Figure 9: Call Time Measurements

OPC

OPC sends JMS Message

Message
Persisted

Message
Delivered

Message Receipt is acknowledged

Supplier

Call
Time

Latency

Figure 10: JMS Call in the Modified JMS Variant

waiting for an actual successful reception to complete.
Should an error occur during the activities of the re-
ceiving supplier order MDB causing the transaction to
roll back, the messaging system can always redeliver
the message since it can be retrieved from persistent
storage. The call time for the modified JMS variant
starts at 11 ms under light load and increases slowly
until it stabilizes at values around 100 ms under high
load (similar to throughput). These characteristics are
related to the additional database activity for persist-
ing messages due to increasing throughput as well as
the growing time needed to serialize the message for
persistence due to increasing CPU utilization.

The first delivery of the message to the supplier
order MDB does not, however, have to wait for the
completion of the operations to persist the message,
but can start immediately. This allows the modified
JMS variant to sustain a very low latency of 2 to 4 ms
over the whole load spectrum. This low latency of the
OPC/supplier interface has a significant impact on the
overall response time of the modified JMS variant, as
it determines the time the next processing step can
begin and as such is part of the time-critical path.

Comparing these results to the original JMS variant
(cross mark) reveals very different call time and la-
tency behavior for the latter. While the sent message

0

50

100

150

200

250

20 40 60 80 100

La
te

nc
y

[m
s]

client threads

Modified JMS Original JMS

Figure 11: Latency Measurements

OPC

OPC sends JMS Message

Calling Transaction sends Commit

Message
Persisted

Commit is Acknowledged
Message
Delivered

 Message Receipt is Acknowledged

Supplier

Call
Time

Latency

Figure 12: JMS Call in the Original JMS Variant

has to be persisted before the send method call can
return in the modified JMS variant, the send operation
being part of a transaction in the original JMS variant
can defer persistence to the later commit operation.
This causes the call time to stay very low at 2-3 ms
throughout the full load range. On the other hand,
the availability of the sent message to the receiving
end at the supplier application is delayed until after
the completion of the transaction in the commit oper-
ation. This prolongs the latency not only by the time
needed to persist the message (as measured by the
call time readings for the non-transacted send in the
modified JMS variant), but also by the time needed
to commit the work of all other actions taken in the
business logic of this processing step. This prolong-
ing effect of measured call time in the modified JMS
variant on latency in a transacted variant should be
kept in mind when considering the measurements of
the following comparisons to the Web Service variant.

Figures 13 and 14 depict the call time and la-
tency measurements for the Web Service variant in
comparison to the modified JMS mode experiments.
As both variants under consideration are perform-
ing the send operation for invoking the supplier sub-
application outside the transaction of the workflow
step, their latencies are not burdened by the time

0

50

100

150

200

250

20 40 60 80 100

C
al

lT
im

e
[m

s]

client threads

Modified JMS Web Service

Figure 13: Call Time Measurement Comparison

0

50

100

150

200

250

20 40 60 80 100

La
te

nc
y

[m
s]

client threads

Modified JMS Web Service

Figure 14: Latency Measurement Comparison

needed to achieve message persistence. For the
same reason, both variants allow immediate visibil-
ity of the sent message as they are not bound to any
isolation requirements. Together, this makes their la-
tency and call time results comparable.

While the modified JMS variant exhibits a 2-4 ms
latency as noted above, the Web Service variant
shows a noticeably higher latency. Under light to mod-
erate load (15 to 40 client threads range) of linear
scalability, equal throughput and unsaturated CPU
resources, the latency increases slowly from 29 ms
to 44 ms. With CPU saturation setting in, the la-
tency reaches 67-78 ms in the high load and over-
load range. As part of the latency time, a SOAP mes-
sage for the Web Service call gets created, serialized
and transmitted to the Web Service endpoint of the
supplier application over the (host internal) network.
The receiving end in the application server parses
the SOAP message and invokes the implementation
method for the Web Service operation with the sup-
plier order XML document string as argument. The
document is sent to the supplier order queue and fi-
nally received at the supplier order MDB. As seen with
the modified JMS variant, the last two steps (send-

ing and receiving the message) together take 2-4 ms
to be executed. The remaining 27-74 ms of latency
account for performing the described steps of the
Web Service call.

The call time of the Web Service variant consists
mainly of three components. As the Web Service
operation gets called synchronously, the caller has
to block until reception of the reply. As a first com-
ponent, it takes the above mentioned 27-74 ms for
the call to arrive at the Web Service implementation
method. The call time to send the passed argument
string (supplier order XML document) to the supplier
order queue follows. Since this is a non-transacted
send operation under identical conditions as in the
modified JMS method, the call time shares the same
characteristics as the call time of that variant (Fig-
ure 9, diamond mark) and decisively shapes the call
time curve. The remaining time component is used
to create, transmit and interpret the reply message of
the Web Service call.

While the call time itself has no impact on the over-
all response time in the variants using non-transacted
send operations, it nonetheless puts the latency read-
ings into perspective. As seen in the comparison
between the modified and original JMS variants, the
call time measurements can give an indication for po-
tential latency implication once transactions are sup-
ported and used in the Web Service variant.

4.4 Effects on Garbage Collection

The BEA WebLogic JRockit Java Virtual Machine
(JVM) version 7.0 SP2 [BEAa] used in our experi-
ments offers a number of garbage collectors. The
generational concurrent garbage collector selected
for our experiments2 works as follows [BEAb]. New
Objects are allocated in the young generation. When
the young generation (called a nursery) is full, the
JVM "stops-the-world" and moves the objects that are
still live in the young generation to the old generation.
An old collector thread runs in the background all the
time; it marks objects in the old space as live and re-
moves the dead objects, returning them to the JVM
as free space.

The WebLogic JRockit JVM offers options for gath-
ering and displaying statistical information on the
garbage collection activities similar to the functional-
ity found in the Sun JVM [Sunc]. The output of the
JVM offers insight into the time and duration of each
garbage collection run performed, as well as the to-
tal time spent for all garbage collections on the young
and old generation over the runtime of the JVM. Fig-
ure 15 shows the garbage collection time for the mod-
ified JMS and Web Service variant experiment series.

2The garbage collector options -Xms500m -Xmx500m -Xns40m

-Xgc:gencon led to good performance results in our environment
and were used for all experiments. See [BEAb] for a description of
all supported options.

0

50

100

150

20 40 60 80 100
0

50

100

C
ol

le
ct

io
n

T
im

e
(o

ld
)

[s
]

client threads

C
ol

le
ct

io
n

T
im

e
(y

ou
ng

)
[s

]

Modified JMS
Young Generat.

Web Service
Old Generation

Figure 15: Garbage Collection Measurements

The increasing time needed for performing the
garbage collection activities under growing load is an
indication for a higher object throughput under load.
The amount of object memory allocated and freed
during the course of an experiment increases with
the order throughput of the system. Our measure-
ments show that the total garbage collection time
of the Web Service variant significantly exceeds the
one of the modified JMS variant, which indicates a
higher level of object throughput in the former. The
time spent in garbage collecting the young genera-
tion increases by 30 percent, while it is 40-50 per-
cent higher for the old generation. The divergence of
the young collection time at the 60 client threads data
point seems to be an anomaly of the exact parameter
values for the chosen garbage collector.

The garbage collection process of the young gen-
eration involving the transfer of all active (live) objects
at that time to the old generation space needs to sus-
pend all user threads to perform its task (so called
"stop-the-world" method). This interruption of exe-
cution has a direct impact on the response times of
all orders being processed at that instance in time.
Based on the observation of the distribution of young
collection occurrences and their duration in conjunc-
tion with the time an order is processed on the ap-
plication server (response time), it can be derived
that about every tenth order in the modified JMS vari-
ant is affected by an interruption of 35 ms on aver-
age under light load. Due to the quickly increasing
number of young garbage collections and increase
in response time under medium to high load (40-60
client threads) at the same time, a third of the orders
are hit by a 40 ms execution interruption in that load
range. Finally under extreme load of 80 and more
client threads, the processing of almost every order
gets suspended for about 80 ms due to garbage col-
lection of the young generation. The distribution of
young generation garbage collections in the Web Ser-
vice variant has very similar characteristics to the one

of the JMS variant. However, the average duration
of a collection run is about 30 percent higher and so
directly contributes up to 25 ms to the response time
penalty of the Web Service variant.

While the garbage collection of the young genera-
tion has a direct impact on response time due to the
suspension of user thread execution, the old garbage
collection acts on performance through a different
mechanism. As the collection of the old generation
is performed mostly without the interruption of user
threads but rather concurrently with them, it is not af-
fecting directly the response time or latency of indi-
vidual orders. It rather takes effect on system perfor-
mance by making the CPU resources more scarce for
processing of the genuine workload. Up to 5 percent
of the run time of the modified JMS variant is spent for
garbage collection of the old generation; up to 8.5 per-
cent for the Web Service variant. This drain on CPU
time prolongs the execution of CPU intensive parts of
the order processing accordingly.

5 Summary and Conclusions

In this paper we studied the effects on performance
when part of the Java Pet Store application is im-
plemented using Web Service interfaces. The ref-
erence implementations were the original Pet Store
application with transactional messaging and a mod-
ified version of Pet Store with non-transactional, but
still reliable messaging. The latter modification was
needed for a fair comparison since today’s Web Ser-
vices Platforms do not provide support for transac-
tional calls. The measurement results of our exper-
iments show that the system throughput penalty from
using Web Services in the Java Pet Store is only
marginal. Under light to moderate load, the through-
put decreases by less than 1 percent and falls be-
hind the modified JMS variant by at most 5 percent
under high and extreme load. The throughput differ-
ence stems from the Web Service variant reaching
the threshold of CPU capacity under slightly lighter
load due to this variant’s higher CPU consumption.

The changes in response time behavior are less
uniform. While the response time of the Web Service
variant increases by about 20 percent under light and
extreme load, the difference grows up to 50 percent
in the moderate to high load range. In addition to the
already mentioned higher CPU consumption, the typi-
cal 20 percent increase results from the higher latency
of the transition between the sub-applications across
the Web Service interface.

In addition to the direct costs of performing
Web Service calls due to operations like serialization,
transmission and parsing of SOAP messages, we
could observe increased garbage collection activity in
the JVM of the application server. The former opera-
tions led to higher memory allocation and deallocation

rates for the Web Service variant. The Web Service
variant of the Pet Store exhibits 30 percent longer exe-
cution interruptions for performing garbage collection
on the young generation, which has a direct impact
on the response time. An additional negative effect
results from a 40 percent higher CPU resource con-
sumption of the garbage collector in the Web Service
variant. This amounts to a total of up to 8.5 percent of
the available CPU time being spent on garbage col-
lection.

Our measurements suggest that for non-
transactional execution the performance penalty
of using Web Services is minimal with respect to
throughput, but up to 50% for response time under
moderate to heavy load. Web Services are a viable
implementation alternative for applications that do
not require transactional behavior. We are currently
working on transaction models for Web Services and
are closely tracking the emerging implementations.
We will report on the performance of transactional
Web Services once stable implementations are
available.

Acknowledgments

We would like to thank BEA Systems Inc. for providing
the required licenses and support for conducting our
reseach with the BEA WebLogic Application Server
and the BEA JRockit JVM. The trademarks or regis-
tered trademarks used in this paper belong to their
respective owners.

References
[BCF+03] David Booth, Michael Champion, Chris Ferris, Francis

McCabe, Eric Newcomer, and David Orchardand. Web
services architecture, 2003. W3C Working Draft 14 May
2003.

[BEAa] BEA Systems, Inc. BEA WebLogic JRockit.
http://www.bea.com/framework.jsp?CNT=index.

htm&FP=/content/products/jrockit/.

[BEAb] BEA Systems, Inc. Tuning the WebLogic JRockit 7.0 JVM
Memory Management System. http://edocs.bea.com/
wljrockit/docs70/tuning/memmgmt.html.

[CCC+01] Patrick Cauldwell, Rajesh Chawla, Vivek Chopra, Gary
Damschen, Chris Dix, Tony Hong andFrancis Norton,
Uche Ogbuji, Glenn Olander, Mark A Richman, Kristy
Saunders, and Zoran Zaev. Professional XML Web Ser-
vices. Wrox Press, 2001.

[CCC+02] Felipe Cabrera, George Copeland, Bill Cox, Tom
Freund, Johannes Klein, Tony Storey, and Satish
Thatte. Web services transaction (ws-transaction),
August 2002. http://www.ibm.com/developerworks/

library/ws-transpec/.

[CCF+02] Felipe Cabrera, George Copeland, Tom Freund, Jo-
hannes Klein, David Langworthy, David Orchard, John
Shewchuk, and Tony Storey. Web services coordination
(ws-coordination), August 2002. http://www.ibm.com/

developerworks/library/ws-coor/.

[Cer02] Ethan Cerami. Web Services Essentials: Distributed
Applications with XML-RPC, SOAP, UDDI & WSDL.

O’Reilly & Associates, Inc., 103a Morris Street, Se-
bastopol, CA 95472, USA, Tel: +1 707 829 0515, and
90 Sherman Street, Cambridge, MA 02140, USA, Tel: +1
617 354 5800, 2002.

[Ful02] Jeffrey Fulmer. Siege — An Open Source Stress Tester,
2002. http://www.joedog.org/siege/index.shtml.

[Jus03] Kai S. Juse. Performance of J2EE-based Web Services.
Master thesis, Darmstadt University of Technology, June
2003. In German.

[Met03] Nigel Metheringham. The Exim Message Transfer Agent,
2003. http://www.exim.org/.

[OAS02] OASIS Business Transactions Technical Committee.
Business Transaction Protocol — Version 1.0, June
2002. http://www.oasis-open.org/committees/

business-transactions/documents/specification/

2002-06-03.BTP_cttee_spec_1.0.pdf.

[SSJt02] Inderjeet Singh, Beth Stearns, Mark Johnson, and the
Enterprise Team. Designing Enterprise Applications
with the J2EE Platform, chapter 11: Architecture of
the Sample Application. Addison-Wesley Pub Co, 2nd

edition, 2002. http://java.sun.com/blueprints/

guidelines/designing_enterprise_applications_

2e/app-arch/app-arch3.html.

[Suna] Sun Microsystems, Inc. Java BluePrints - Guidelines,
Patterns, and Code for end-to-end Java Applications.
http://java.sun.com/blueprints/.

[Sunb] Sun Microsystems, Inc. Java Blueprints Enterprise Pat-
terns. http://java.sun.com/blueprints/patterns/

index.html.

[Sunc] Sun Microsystems, Inc. Java HotSpot Technology. http:
//java.sun.com/products/hotspot/.

[Sund] Sun Microsystems, Inc. Java Pet Store Sample Ap-
plication. Documentation. http://java.sun.com/

blueprints/code/jps131/docs/index.html.

[Tid00] Doug Tidwell. Web services: the Web’s next revo-
lution. IBM developerWorks — Web service, Novem-
ber 2000. http://www-106.ibm.com/developerworks/

webservices/edu/ws-dw-wsbasics-i.html.

